黄争鸣
教授
电子邮箱:huangzm@tongji.edu.cn
电话:021-65985373
1976/12—1979/12,西北电讯工程学院,无线电结构设备与工艺专业,大学
1980/9—1983/3,华中工学院,固体力学专业,硕士
1996/1—1997/12,新加坡国立大学,材料工程专业,1999年8月获哲学博士
1979/12—1980/8,四川达县0六四基地301研究所,技术科,技术员
1983/4—1995/12,华中工学院/华中理工大学,力学系,助教、讲师、副教授
1998/1—1999/7,新加坡国立大学,聚合物实验室,研究工程师
1999/8—2002/4,新加坡国立大学,聚合物实验室,研究员
2002/5-2007/4,同济大学,工程力学系/航空航天与力学学院,长江学者特聘教授
2007/5—迄今,同济大学,航空航天与力学学院,教授
主要研究方向及成就:
1. 复合材料力学
固体力学研究材料本构、变形、破坏和强度,材料分各向同性与各向异性。各向同性材料力学理论已基本完善,各向异性暨复合材料的力学理论除线弹性外,皆未成熟。根本原因是,现有理论只能得到复合材料均值应力。连续介质力学,将材料中一点应力,定义为含该点无穷小单元体应力的平均值,复合材料单元体不能无穷小,因其中须同时含纤维和基体,故曰均值应力。然而,复合材料性能必须基于真实应力计算,弹性性能亦如此,只因均值应力和真实应力皆处弹性阶段,两者所得结果相同,造成了复合材料弹性性能与真实应力无关的假象。在该领域,黄争鸣的系统性、开创性贡献包括:
(1)创建了任意连续纤维、短纤维及颗粒增强复合材料的统一弹-塑性解析本构理论—桥联模型(Bridging Model),见代表性论著1、4、11、16。实践是检验真理的唯一标准,任何理论,只有得到他人应用,才算受到实践检验;他用越多,检验越彻底,价值越大。力学自阿基米德时代迄今已发展几千年,由国人创建并被他人大量应用(他人据此公开发表研究论文过百篇)的理论凤毛麟角,固体力学前辈大概只有胡海昌先生的变分原理被他人应用过百,不完全统计,桥联模型被他人应用已超240篇(列表见后)。
(2)首创(从0到1)并系统建立了基体真实应力理论,见代表性论著1、4、12、13。黄争鸣发现,纤维真实应力与其均值应力相同,基体真实应力由其均值应力与基体应力集中系数相乘得到,该系数不可按经典定义,而是由线平均应力除以体平均应力确定。尽管该理论最近才建立起来,但已被国内外他用14篇(列表见后)。
(3)创建了预报任意层合结构层间开裂/分层的层间基体应力修正法,见代表性论著2、6。分层是层合板、金属与复合材料组合板、蜂窝或泡沫夹芯板…等层合结构最常见破坏形式,现有预报分层的众多方法,几乎都存在两大不足:A. 部分输入数据无测试标准,说明这种测试或难实现、或重现度低、或离散性大;B. 几乎每个加载步都需迭代,计算量巨大且结果不知是否正确。层间基体应力修正法,不仅输入数据降至最少,实验皆有标准可循,而且将分层等价为静态问题分析,无需迭代,求解结果总是正确。
(4)基于物理原理创建了检测各种基体破坏的强度理论,见代表性论著1、3、4、5。强度理论历经数百年,基于数学、物理或唯象原理建立。数学上,材料破坏面是应力/应变的多元函数,幂级数展开后保留低阶项,再由简单加载测试的强度参数确定展开系数,如Tsai-Wu判据。物理原理将材料破坏应力绘成Mohr圆,改变载荷组合得一系列破坏应力圆,其公切线构成破坏面包络线,任意载荷下材料破坏的充分必要条件,是其Mohr圆与包络线内切,将原本无穷多实验所得包络线用多项式近似,我们建立了基体强度理论。虽然绝大多数强度理论基于唯象原理建立,但从基础的坚实性评判,有:物理原理不输数学原理不输唯象原理。
(5)在桥联模型和基体真实应力基础上,解决了一系列困扰业界难题,见代表性论著1、4、7、9、10,如:任意载荷下纤维和基体界面何时开裂?为啥先进复合材料轴向与横向拉伸直到破坏皆线性,但剪切非线性变形却能超过纯基体的弹塑性变形?为啥如T300到T1100碳纤维的强度大幅提升,但复合材料的轴向压缩强度却几乎保持不变?...
(6)从理论和实验对比揭示了复合材料代表性单元中纤维越少精度越高,见代表性论著8,否定了多尺度模拟研究中的“代表性单元应足够大”一说。
2. 超弹性材料本构理论
橡胶类超弹性材料,应变高达数百甚至过千,其本构理论主要采用级数形式的多项式及Ogden模型,研究发现(见ABAQUS理论手册),由单一实验数据拟合这些模型的材料参数后,预测其它载荷下的变形有可能失真甚至发散。根本原因是,模型中的材料参数与实验数据不能一一对应。超弹性材料的本构关系,是各向同性材料力学还需完善的一例。黄争鸣基于“各向同性、始终弹性、体积不可压”原则,创建了超弹性材料的增量型本构理论,见代表性论文17、18,材料参数和实验数据一一对应,由任意载荷测试数据确定材料参数后,预测其它载荷下的变形都与实验吻合良好。
3. 纳米纤维制备
静电纺丝被认为是唯一可制备连续纳米/亚微米纤维的技术,但此前只能纺出单一材料实心超细纤维,黄争鸣是芯-壳双材料复合纳米纤维纺丝技术的发明人之一,见代表性论著14、20。
4. 其他
建立了任意非线性算子方程解存在性(Hilbert第20个问题)的一个充分必要条件,见代表性论著19。
发明了“理想叶根连接与梯形块根段结构”技术,见代表性论著21,可将目前风机叶片材料消耗同等(材料类型不变、叶片外形不变)降低10%。
发表期刊论文215篇、学术专著4本、主编一本、合著章节8章、授权发明专利12项,其中一篇论文(代表性论著15)SCI他引超6000次。
主讲课程:
复合材料力学
认识复合材料
现代力学概论
代表性论著:
1. 黄争鸣*,复合材料破坏与强度,科学出版社,北京,2018.
2. Zhou J.C., Huang Z.-M.*, Predicting delamination of hybrid laminate via stress modification on interlaminar matrix layer, Engineering Fracture Mechanics (on line), p. 108333, 2022. https://doi.org/10.1016/j.engfracmech.2022.108333.
3. Wang L.-S., Huang Z.-M.*, On strength prediction of laminated composites, Composites Science and Technology, 219: 109206, 2022.
4. Huang Z.-M.*, Constitutive relation, deformation, failure and strength of composites reinforced with continuous/short fibers or particles, Composite Structures, 262: 113279, 2021.
5. Huang Z.-M.*, Wang L.-S., Jiang F., Xue Y. D., Detection on matrix induced composite failures, Composites Science and Technology, 205: 108670, 2021.
6. Huang Z.-M.*, Li P., Prediction of laminate delamination with no iteration, Engineering Fracture Mechanics, 238: 107248, 2020.
7. Zhou Y, Huang Z.-M.*, Shear deformation of a composite until failure with a debonded interface, Composite Structures, 254: 112797, 2020.
8. Huang Z.-M.*, On micromechanics approach to stiffness and strength of unidirectional composites, Journal of Reinforced Plastics and Composites, 38: 167–196, 2019.
9. Zhou Y., Huang Z.-M.*, Failure of fiber-reinforced composite laminates under longitudinal compression, Journal of Composite Materials, 53(24): 3395–3411, 2019.
10. Zhou Y., Huang Z.-M.*, Liu L., Prediction of interfacial debonding in fiber-reinforced composite laminates, Polymer Composites, 40(5): 1828-1841, 2019.
11. Huang Z.-M.*, Zhang C.C., Xue Y.D., Stiffness prediction of short fiber reinforced composites, International Journal of Mechanical Sciences, 161-162: 105068, 2019.
12. Huang Z.-M.*, Xin L.-M., In situ strengths of matrix in a composite, Acta Mechanica Sinica, 33: 120–131, 2017.
13. Huang Z.-M.*, Liu L., Predicting strength of fibrous laminates under triaxial loads only upon independently measured constituent properties, International Journal of Mechanical Sciences, 79: 105–129, 2014.
14. Zhang Y.Z.*, Huang Z.-M.*, Xu XJ, Lim CT, Ramakrishna S, Preparation of core-shell tructured PCL-r-gelatin bi-component nanofibers by coaxial electrospinning, Chemistry of Materials, 16(18): 3406-3409, 2004.
15. Huang Z.-M.*, Zhang Y.-Z., Kotaki M., Ramakrishna S., A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites, Composites Science and Technology, 63: 2223-2253, 2003.
16. Huang Z.-M.*, Simulation of the mechanical properties of fibrous composites by the Bridging micromechanics Model, Composites Part A, 32(2): 143-172, 2001.
17. Huang Z.-M.*, A Unified Micromechanical Model for the Mechanical Properties of Two Constituent Composite Materials, Part IV: Rubber-Elastic Behavior, Journal of Thermoplastic Composite Materials, 13(2): 119-139, 2000.
18. Huang Z.-M.*, Ramakrishna S, Tay AAO, Modelling of Stress-Strain Behavior of a Knitted Fabric Reinforced Elastomer Composite, Composites Science and Technology, 60(5): 671-691, 2000.
19. Huang Z.-M.*, A necessary and sufficient condition for the existence of a solution to an operator equation, Nonlinear Analysis, Theory, Methods & Applications, 13(7): 829-832, 1989.
20. 黄争鸣、张彦中,共轴复合连续纳/微米纤维及其制备方法,中国发明专利授权专利号:ZL 200310108130.9, 2003.
21. 黄争鸣,风力机叶片结构及其加工成型方法和用途,中国发明专利授权专利号:ZL200910197175.5, 2009.
他用论文列表:
A. 他人应用桥联模型(Bridging Model)经Peer Review后公开发表的研究文献列表
(注:1~204是应用桥联模型解决科学问题的期刊论文列表,205~246则是应用桥联模型完成的硕士/博士论文列表,这些文献尾部方括号内的数字表示该文献中出现桥联模型公式、明示采用桥联模型、文内图或表中数据基于桥联模型计算所得的页码)
1. Luccioni B.M., Oller S., MODELO PARA COMPUESTOS REFORZADOS CON FIBRAS, Mecnica Computacional, Vol. 22, pp. 2049-2063, 2003 [p. 2060].
2. Soden P.D., Kaddour A.S., Hinton M.J., Recommendations for designers and researchers resulting from the world-wide failure exercise, Comp. Sci. Tech., Vol. 64, No. 3-4, pp. 589-604, 2004 [p. 593].
3. Kaddour AS, Hinton MJ, Soden PD. A comparison of the predictive capabilities of current failure theories for composite laminates: additional contributions, Comp. Sci. Tech., Vol. 64, No. 3-4, pp. 449-476, 2004 [p. 451]
4. Hinton M.J., Kaddour A.S., Soden P.D., A further assessment of the predictive capabilities of current failure theories for composite laminates: comparison with experimental evidence, Comp. Sci. Tech., Vol. 64, No. 3-4, pp. 549-588, 2004 [p. 552].
5. Pochiraju K., Jovanovic V., Modeling Material Property Heterogeneity in Fiber Reinforced Injection Molded Plastic Parts, Polymer Composites, 26: 98-113, 2005 [p.106].
6. Zabihpoor M., Adibnazari S. and Abedian A., Evaluation and development of bridging micromechanical model using mechanical properties of composite materials characterization tests, Iranian Journal of Polymer Science and Technology (Persian), Vol. 18, No. 6, pp. 369-376, 2005 [p.370].
7. Zhou R., Hu H., Chen N., Feng X., An Experimental and Numerical Study on the Impact Energy Absorption Characteristics of the Multiaxial Warp Knitted (MWK) Reinforced Composites, J. Comp. Mater., Vol. 39, No. 6, pp. 525-542, 2005 [p. 534].
8. 吕毅,吕国志,吕胜利, 细观力学方法预测单向复合材料的宏观弹性模量,《西北工业大学学报》, 24卷, pp. 787-790, 2006 [p.788].
9. Chun H.J., Kim H.W., Byun J.H., Effects of through-the-thickness stitches on the elastic behavior of multi-axial warp knit fabric composites, Composite Structures, Vol. 74, pp. 484 -494, 2006 [p. 486].
10. 李晨,许希武, 缝合复合材料层板三维纤维弯曲模型及压缩强度预报,《复合材料学报》, 23卷, pp. 179-185, 2006 [p. 183].
11. 李晨,许希武, 缝合复合材料层板抗拉强度的预测,《机械工程材料》, 30卷, pp. 10-12, 2006 [p. 12].
12. Chun H.-J., Kim H.-W., Byun J. H., Elastic Behaviors of Stitched Multi-axial Warp Knit Fabric Composites, Key Engineering Materials, Vols. 306-308, pp 817-822, 2006 [p. 819].
13. Luccioni B.M., Constitutive Model for Fiber-Reinforced Composite Laminates, J. Appl. Mech. ASME, Vol. 73, pp. 901-910, 2006 [p. 905].
14. Zabihpoor M. and Adibnazari S., Simulation of fiber/matrix debonding in unidirectional composites under fatigue loading, Journal of Reinforced Plastics and Composites, Vol. 26, pp. 743-760, 2007 [p. 747].
15. Zabihpoor M., Adibnazari S., A micromechanics approach for fatigue of unidirectional fibrous composites, Iranian Polymer Journal, Vol. 16, pp. 219-232, 2007 [p. 222].
16. 徐焜, 许希武, 田静, 小编织角三维编织复合材料拉伸强度模型,《航空学报》, 28卷, pp. 294-300, 2007 [p. 296].
17. Kumar P., Chandra R., Singh S.P., Interphase Effect on Damping in Fiber Reinforced Composites, ICCES, Vol. 4, pp. 67-72, 2007 [p. 68].
18. González A., Graciani E., París F., Prediction of in-plane stiffness properties of non-crimp fabric laminates by means of 3D finite element analysis, Composites Science and Technology, Vol. 68, pp. 121-131, 2008 [p. 126].
19. Li D., Lu Z., Lu W., Theoretical prediction of stiffness and strength of three-dimensional and four-directional braided composites, Applied Mathematics and Mechanics, Vol. 29, pp. 163-170, 2008 [p. 165].
20. 李典森, 卢子兴, 卢文书, 三维四向编织复合材料刚度和强度的理论预测,《应用数学和力学》, 29卷, pp. 149-156, 2008 [p. 151].
21. 熊璇, 吕国志, 吕毅, 细观力学法预测单向复合材料的有效热膨胀系数,《强度与环境》, 35卷, pp. 24-30, 2008 [p. 26].
22. Ryan S., Wicklein M., Mouritz A., Riedel W., Schafer F., Thoma K., Theoretical prediction of dynamic composite material properties for hypervelocity impact simulations, International Journal of Impact Engineering, Vol. 36, pp. 899-912, 2009 [p. 901].
23. Li D., Lu Z., Chen L., Li J.L., Microstructure and mechanical properties of three-dimensional five-directional braided composites, International Journal of Solids and Structures, Vol. 46, pp. 3422-3432, 2009 [p. 3427].
24. 魏丽梅, 李典森, 基于桥联模型预报三维五向编织复合材料的刚度和强度,《产业用纺织品》, 27卷, pp. 21-25, 2009 [p. 22].
25. Shaw A., Sriramula S., Gosling P.D., Chryssanthopoulos M.K., A critical reliability evaluation of fibre reinforced composite materials based on probabilistic micro and macro-mechanical analysis, Composites Part B, Vol. 41, pp. 446-453, 2010 [p. 448].
26. 常新龙, 李正亮, 胡宽, 孙涛, 应用桥联模型预测复合材料吸湿老化剩余强度, 《复合材料学报》, 27卷, pp. 208-212, 2010 [p. 209].
27. 马元春, 韩海涛, 卢子兴, 卢文书, 邱涛. 缝纫泡沫夹芯复合材料失效强度的理论预测与试验验证,《复合材料学报》, 27卷, pp. 108-115, 2010 [p. 111].
28. Kumar P., Chandra R., Singh S.P., Interphase effect on fiber-reinforced polymer composites, Composite Interfaces, Vol. 17, pp. 15-35, 2010 [p. 17].
29. Zhang Y.X., Zhang H.S., Multiscale finite element modeling of failure process of composite laminates, Composite Structures, Vol. 92, pp. 2159-2165, 2010 [p. 2160].
30. Jin L., Hu H., Sun B., Gu B., A simplified microstructure model of bi-axial warp-knitted composite for ballistic impact simulation, Comp. Part B, Vol. 41, pp. 337–353, 2010 [p. 342].
31. Ma Y.C., Han H.T., Lu Z.X., Lu W.S., Qiu T., Guo J.H., Theoretical prediction of the stiffness and failure strength of stitched foam-core sandwich composites, Polymers & Polymer Composites, Vol. 19, pp. 303-311, 2011 [p. 306].
32. Kumar P., Chandra R., Singh S.P., Measurement of damping of fiber reinforced composite material, Journal of Materials Science and Engineering B, Vol. 1, pp. 555-564, 2011 [p. 557].
33. 常新龙, 李正亮, 陈特熙, 方鹏亚. 激光-机械载荷联合作用下复合材料层合板的破坏规律分析,《红外与激光工程》, 40卷, pp. 1935-1939, 2011 [p. 1936].
34. Nehme S., Hallal A., Fardoun F., Younes R., Hagege B., Aboura Z., Benzeggagh M., Chehade F.H., Numerical/analytical methods to evaluate the mechanical behavior of interlock composites, Journal of Composite Materials, Vol. 45, pp. 1699-1716, 2011 [p. 1716].
35. 王春敏, 针织复合材料力学性能的研究, 《材料导报》, Vol. 25, No. 18, pp. 277-280, 2011 [p. 280]
36. 覃海英, 刘晓红. 铺设方法对风机叶片复合材料力学性能的影响, 《装备制造技术》, No. 5, pp. 13-15, 2011 [p. 8]
37. Younes R., Hallal A., Fardoun F., Chehade F.H., Comparative review study on elastic properties modeling for unidirectional composite materials, in: Composites and Their Properties, Hu N. ed, InTech, Chapter 17, http://dx.doi.org/10.5772/50362, pp. 391-408, 2012 [p. 396].
38. Shokrieh M.M., Mazloomi M.S., A new analytical model for calculation of stiffness of three-dimensional four-directional braided composites, Composite Structures, Vol. 94, pp. 1005-1015, 2012 [p. 1011].
39. Shokrieh M.M., Nasir V., Karimipour H., A micromechanical study on longitudinal strength of fibrous composites exposed to acidic environment, Materials & Design, Vol. 35, pp. 394- 403, 2012 [p. 395].
40. Bhalchandra S.A., Shiradhonkar Y.S., Determination of properties of transversely isotropic lamina using micromechanics approach, Elixir Cement & Con. Com., Vol. 48, pp. 9588-9593, 2012 [p. 9591].
41. Liu L., Zhou Y., Pan S., Experimental and analysis of the mechanical behaviors of multi-walled nanotubes/ polyurethane nanoweb reinforced epoxy composites, Journal of Reinforced Plastics and Composites, Vol. 32, pp. 823-834, 2013 [p. 830].
42. 周宏伟,易海洋,薛东杰,段志强,张春花, Mishnaevsky J.L., 纤维方位角对玻纤复合材料破坏机理的影响研究,《中国科学: 物理学\力学\天文学》, 43卷, pp. 167-176, 2013 [p. 169].
43. Guo Q., Zhang G., Li J., Process parameters design of a three-dimensional and five-directional braided composite joint based on finite element analysis, Materials & Design, Vol. 46, pp. 291-300, 2013 [p. 294].
44. 李剑峰, 燕瑛, 复合材料热膨胀性能的细观分析模型与预报, 《北京航空航天大学学报》, 39卷, pp. 1069-1073+1085, 2013 [p. 1070].
45. Guedes R.M., Xavier J., Understanding and predicting stiffness in advanced fibre-reinforced polymer (FRP) composites for structural applications, in: Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications Ed. By J. Bai, Woodhead Publishing Ltd., Chapter 11, pp. 298-360, 2013 [p. 322].
46. Ding J., Liu J., Li C., Yi H., Failure Mechanism of Layered Salt Rock in Three-point Bending Test, Applied Mechanics and Materials, Vol. 256-259, pp. 48-56, 2013 [p. 51].
47. Kaddour A.S., Hinton M.J., Maturity of 3D failure criteria for fibre reinforced composites: Comparison between theories and experiments: Part B of WWFE-II, J. Comp. Mater., Vol. 47, No. 6-7, pp. 925-966, 2013 [p. 929].
48. Marino M., Francesca Nerilli, Vairo G., A finite-element approach for the analysis of pin-bearing failure of composite laminates, Frattura ed Integrità Strutturale, Vol. 29, pp. 241-250, 2014 [p. 242].
49. 刘万雷, 常新龙, 张晓军, 胡宽, 纤维增强复合材料宏观性能预测与可靠度分析, 《玻璃钢/复合材料》, 10期, pp. 42-47, 2014 [p. 43].
50. Wu L., Gu B., Fatigue behaviors of four-step three-dimensional braided composite material: a meso-scale approach computation, Textile Research Journal, Vol. 84, pp. 1915-1930, 2014 [p. 1919].
51. Zhang C., Binienda W.K., Kohlman L.W., Analytical model and numerical analysis of the elastic behavior of triaxial braided composites, Journal of Aerospace Engineering, Vol. 27, pp. 473-483, 2014 [p. 476].
52. Tan Q., Liu L., Liu Y., Leng J.S., Thermal mechanical constitutive model of fiber reinforced shape memory polymer composite: based on bridging model, Composites Part A, Vol. 64, pp. 132-138, 2014 [p. 134].
53. Shokrieh M.M., Mosalmani R., Omidi M.J., Strain-rate dependent micromechanical method to investigate the strength properties of glass/epoxy composites, Composite Structures, Vol. 111, pp. 232-239, 2014 [p. 234].
54. Sun B., Pan H., Gu B., Tensile impact damage behaviors of co-woven-knitted composite materials with a simplified microstructure model, Textile Research Journal, Vol. 84, pp. 1742 -1760, 2014 [p. 1744].
55. Bhalchandra S.A., Shiradhonkar Y., Daimi S.S., Comparison of Properties of Transversely Isotropic Lamina Using Method of Cells and Composite Cylinder Assemblage, International Journal of Advanced Science and Technology, Vol. 64, pp. 43-58, 2014 [p. 49].
56. Vašíček M., Computational Prediction of the Mechanical Properties of a 2D Triaxially Braided Composite, Journal of Middle European Construction & Design of Cars, 12(2): 10-16, 2014 [p. 12].
57. 张中伟,严静,孙宝忠,钱建华,三维编织复合材料矩形梁与T型梁准静态弯曲实验及有限元分析,《东华大学学报(自然科学版)》,40(5): 522-526, 2014 [p. 524].
58. Nerilli F., Tarquini L., Marino M., Vairo G., Numerical Modeling of Failure Modes in Bolted Composite Laminates, Proceedings of the International Conference on Numerical Analysis and Applied Mathematics, AIP Conf. Proc. 1648, pp. 570019-1–570019-5, 2014 [p. 570019-2].
59. Zhao L., Zhang B.M., Qing X.L., Prediction of the Biaxial Failure Strength of Composite Laminates with Unit Cell Analytic Model, J. Wuhan Univ. Tech. –Mater. Sci. Ed., Vol. 29, No. 5, pp. 923-927, 2014 [p. 925].
60. Ghasemi A.R., Mohammadi M.M., Moradi M., Investigation of Mechanical and Thermal Properties of Polymer Composites Reinforced by Multi-Walled Carbon Nanotube for Reduction of Residual Stresses, Iranian J. Polym. Sci. Tech., Vol. 27, No. 3, pp. 213-230, 2014 [p. 219].
61. Shokrieh M.M., Mosalmani R., Omidi M.J., A strain-rate dependent micromechanical constitutive model for glass/epoxy composite, Composite Structures, Vol. 121, pp. 37-45, 2015 [p. 39].
62. Xu J., Lomov S.V., Verpoest I., A progressive damage model of textile composites on meso-scale using finite element method: Fatigue damage analysis, Computers & Structures, Vol. 152, pp. 96-112, 2015 [p. 105].
63. Nerilli F., Marino M., Vairo G.., A numerical failure analysis of multi-bolted joints in FRP laminates based on basalt fibers, Procedia Engineering, Vol. 109, pp. 492-506, 2015 [p. 495].
64. Zhang D., Sun Y., Wang X., Chen L., Meso-scale finite element analyses of three-dimensional five-directional braided composites subjected to uniaxial and biaxial loading, Journal of Reinforced Plastics & Composites, Vol. 34, pp. 1989-2005, 2015 [p. 1991].
65. Ghasemi A.R., Mohammadi M.M., Mohandes M., The Role of Carbon Nanofibers on Thermo Mechanical Properties of Polymer Matrix Composites and Their Effect on Reduction of Residual Stresses, Composites Part B, Vol. 77, pp. 519-527, 2015 [p. 522].
66. Wu L., Gu B., Sun B., Finite element analyses of four-step 3D braided composite bending damage using repeating unit cell model, International Journal of Damage Mechanics, Vol. 24, pp. 59–75, 2015 [p. 66].
67. Sun J., Zhou G., Zhou C., Microstructure and mechanical properties of 3D surface-core 4-directional braided composites, Journal of Materials Science, Vol. 50, pp. 7398-7412, 2015 [p. 7406].
68. Qi W., Xu X., Analytical method of dynamic properties of FRP based on micromechanical level, Chinese Journal of Aeronautics, Vol. 28, pp. 939–945, 2015 [p. 941].
69. Niknami A., Shariyat M., Coupled Thermoelasticity Impact Response Analysis of Composite Plates with SMA Wires in Thermal Environments, Iranian Journal of Mechanical Engineering, Vol. 16, pp. 73-96, 2015 [p. 80].
70. Zhang D., Sun Y., Wang X., Chen L., Prediction of macro-mechanical properties of 3D braided composites based on fiber embedded matrix method, Composite Structures, Vol. 134, pp. 393-408, 2015 [p. 402].
71. Zhang S., Zhang C., Chen X., Effect of statistical correlation between ply mechanical properties on reliability of fibre reinforced plastic composite structures, Journal of Composite Materials, Vol. 49, No. 23, pp. 2935-2945, 2015 [p. 2936].
72. Huang B., Sun L., Wang L., Li T., Effect of fiber waviness and cluster on effective elastic properties of fiber reinforced composites, Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition, pp. 1-9, 2015 [p. 3]
73. Tomlinson G., Siegwolf R.T.W., Buchmann N., Khorashadizadeh S.N., New approach for fatigue life prediction of composite plates using micromechanical bridging model, Journal of Composite Materials, Vol. 49, pp. 309–319, 2015 [p. 310].
74. Niknami A., Shariyat M., Refined constitutive, bridging, and contact laws for including effects of the impact-induced temperature rise in impact responses of composite plates with embedded SMA wires, Thin-Walled Structures, Vol. 106, pp. 166-178, 2016 [p. 169].
75. Hafiychuk V., Modeling of Microstructure for Uncertainty Assessment of Carbon Fiber Reinforced Polymer Composites, Aerospace Conference, IEEE Xplore, pp. 1-9, 2016 [p. 3].
76. Zhang S., Zhang L., Wang Y., Tao J., Chen X., Effect of ply level thickness uncertainty on reliability of laminated composite panels, Journal of Reinforced Plastics & Composites, Vol. 35, pp. 1387-1400, 2016 [p. 1390].
77. Liu W., Chang X., Zhang X., Zhang Y., Multiscale model for progressive damage prediction of carbon/epoxy laminates under thermal-mechanical loading, Proceedings of the 2016 4th International Conference on Machinery, Materials and Information Technology Applications, ACSR-Advances in Computer Science Research, Vol. 71, pp. 800-805, 2016 [p. 801].
78. Zhang M., Zuo C., Sun B., Gu B., Thermal ageing degradation mechanisms on compressive behavior of 3-D braided composites in experimental and numerical study, Composite Structures, Vol. 140, pp. 180–191, 2016 [p. 181].
79. 沙云东,贾秋月,骆丽,赵奉同,栾孝驰, 连续纤维增强金属基复合材料涡轮轴结构承扭特性分析,《航空动力学报》, 31卷, pp. 1377-1384, 2016 [p. 1379].
80. Gideon R.K., Zhou H.L., Wu X.Y., Sun B.Z., Gu B.H., Finite element analysis of 3D circular braided composites tube damage based on three unit cell models under axial compression loading, International Journal of Damage Mechanics, Vol. 25, No. 4, pp. 574-607, 2016 [p. 588].
81. Shokrieh M. M., Ghasemi R., Mosalmani R., Micromechanics based analytical model for prediction of the elastic properties of woven fabric composites, Modares Mechanical Engineering, Vol. 16, No. 7, pp. 1-11, 2016 [p. 4] (in Persian).
82. Barfuss D., Garthaus C., Gude M., Grützner R., Design of multi-scale-structured Al-CF/PA6 contour joints, Int. J. Automotive Composites, Vol. 2, No. 3/4, pp. 299–315, 2016 [p. 305].
83. Hafiychuk V., Modeling of microstructure for uncertainty assessment of carbon fiber reinforced polymer composites, 2016 IEEE Aerospace Conference, IEEE, pp. 1-9, 2016 [p. 3].
84. Zhang D., Chen L., Wang Y., Zhang L., Zhang Y., Yu K., Lu X., Sun J., Xiao X., Qian K., Stress field distribution of warp-reinforced 2.5D woven composites using an idealized meso-scale voxel-based model, J. Mater. Sci., Vol. 52, pp. 6814–6836, 2017 [p. 6821].
85. Shokrieh M.M., Ghasemi R., Mosalmani R., A general micromechanical model to predict elastic and strength properties of balanced plain weave fabric composites, J. Comp. Mater., Vol. 51, pp. 2863-2878, 2017 [p. 2877].
86. Zhang W., Gu B., Sun B., Thermal-mechanical coupling modeling of 3D braided composite under impact compression loading and high temperature field, Comp. Sci. Tech., Vol. 140, pp. 73-88, 2017 [p. 75].
87. Qiao T., Liu L., Li F., Lan X., Liu Y., Leng J., Strength property analysis for fiber-reinforced shape memory polymer composite laminate, Journal of Intelligent Material Systems and Structures, Vol. 28, pp. 1627–1639, 2017 [p. 1631].
88. Zhang M., Sun B., Gu B., Meso-structure ageing mechanism of 3-D braided composite’s compressive behaviors under accelerated thermo-oxidative ageing environment, Mechanics of Materials, Vol. 115, pp. 47–63, 2017 [p. 50].
89. Gao C.Y., Xiao J.Z., Zhang L.C., Ke Y.L., On the static and dynamic properties of fiber-reinforced polymer composites: A three-phase constitutive model, Journal of Thermoplastics Composite Materials, Vol. 30, pp. 1560–1577, 2017 [p. 1563].
90. Medikonda S., Tabiei A., Hamm R., A Comparative study on the Effect of Representative Volume Cell (RVC) Boundary Conditions on the Elastic Properties of a Micromechanics Based Unidirectional Composite Material Model, Int. J. Comp. Mater., 2017, Vol. 7, pp. 51-71, 2017 [p. 62].
91. Wang H., Cao M., Siddique A., Sun B., Gu B., Numerical analysis of thermal expansion behaviors and interfacial thermal stress of 3D braided composite materials, Computational Materials Science, Vol. 138, pp. 77-91, 2017 [p. 79].
92. Amann C., Kreiss S., Grass H., Meinhardt J., A review on process-induced distortions of carbon fiber reinforced thermosets for large-scale production, Prod. Eng. Res. Devel., Vol. 11, pp. 665–675, 2017 [p. 672].
93. Nerilli F., Vairo G., Progressive damage in composite bolted joints via a computational micromechanical approach, Composites Part B, Vol. 111, pp. 357-371, 2017 [p. 361].
94. Liu W., Chang X., Zhang X., Zhang Y., Progressive damage analysis of carbon/epoxy laminates under couple laser and mechanical loading, Results in Physics, Vol. 7, pp. 995-1005, 2017 [p. 997].
95. 雷贤卿, 杨科林, 马文锁, 孟琦, 网状增强相纤维棒几何建模及弹性性能研究,《中国胶粘剂》, 26卷, pp. 502-507, 2017 [p. 17].
96. Zhang D., Zheng X.T., Wu T.C., Prediction of Elastic Properties of 3D4d Braided Composite Based on Hybrid Model, Key Engineering Materials, Vol. 754, pp. 222-225, 2017 [p. 223].
97. Tao W., Liu Z., Zhu P., Zhu C., Chen W., Multi-scale design of three dimensional woven composite automobile fender using modified particle swarm optimization algorithm, Composite Structures, Vol. 181, pp. 73-83, 2017 [p. 75].
98. 陈滨琦, 曾建江, 王玉青, 童明波, 三向受压下单向复合材料层板破坏的细观力学分析, 《复合材料学报》, Vol. 34, No. 4, pp. 573-583, 2017 [p. 578].
99. 吴闻酉,刘柳,储筠霖,皮爱国, 基于改进桥联模型的CFRP层合结构抗冲击载荷动态力学性能研究, 《北京理工大学学报(自然科学版)》, Vol. 37(s2), pp. 5-9. 2017 [p. 6].
100. Amann C., Kreissl S., Grass H., Meinhardt J., A review on process‑induced distortions of carbon fiber reinforced thermosets for large‑scale production, Prod. Eng. Res. Devel., Vol. 11, pp. 665–675, 2017 [p. 672].
101. Tai J.H., Kaw A., Transverse shear modulus of unidirectional composites with voids estimated by the multiple-cells model, Composites Part A, Vol. 105, pp. 310–320, 2018 [p. 311].
102. Hao W.F, Liu Y., Huang X.R., Liu Y.H., Zhu J.G., A Unit-Cell Model for Predicting the Elastic Constants of 3D Four Directional Cylindrical Braided Composite Shafts, Appl Compos Mater., 25: 619–633, 2018 [p. 626].
103. Liu S., Shi B., Siddique A., Du Y., Sun B., Gu B., Numerical analyses on thermal stress distribution induced from impact compression in 3d carbon fiber/epoxy braided composite materials, Journal of Thermal Stresses, Vol. 41, pp. 903-919, 2018 [p. 906].
104. Zhao Z, Dang H, Zhang C, Yun G. J., Li Y., A multi-scale modeling framework for impact damage simulation of triaxially braided composites. Composites Part A, Vol. 110, pp. 113-125, 2018 [p. 115]
105. Wu W., Liu L., Chu Y., Pi A., Dynamic Mechanical Properties of Typical CFRP Laminate Under High-impact Compressive Loads, Int. J.. Multiphysics, Vol. 12, pp. 57-78, 2018 [p. 59].
106. Petrů M., Ondřej N., FEM Analysis of Mechanical and Structural Properties of Long Fiber-Reinforced Composites, in Finite Element Method-Simulation, Numerical Analysis and Solution Techniques, InTech, http://dx.doi.org/10.5772/intechopen.718812018, pp. 1-22, 2018 [p. 11].
107. Mohammadi B., Mahmoudi A., Developing a new model to predict the fatigue life of cross-ply laminates using coupled CDM-entropy generation approach, Theoretical and Applied Fracture Mechanics, Vol. 95, pp. 18-27, 2018 [p.22].
108. Ren C., Liu T., Siddique A., Sun B., Gu B., High-speed visualizing and mesoscale modeling for deformation and damage of 3D angle-interlock woven composites subjected to transverse impacts, Int. J. Mech. Sci., Vol. 140, pp. 119-132, 2018 [p. 124].
109. Heidari-Rarani M., Bashandeh-Khodaei-Naeini K., Mirkhalaf SM., Micromechanical modeling of the mechanical behavior of unidirectional composites – A comparative study, J. Reinf. Plastics & Comp., Vol. 37, No. 16, pp. 1051–1071, 2018 [1059].
110. Vignoli L. L., Savi M. M., Multiscale Failure Analysis of Cylindrical Composite Pressure Vessel: A Parametric Study, Latin Amer. J. Solids & Struct., Vol. 15, e63:1-20, 2018 [p. e63-5].
111. Ghasemi A. R., Fesharaki M. M., Effect of carbon nanotube on cured shape of cross-ply polymer matrix nanocomposite laminates: analytical and experimental study, Iranian Polymer J., Vol. 27, pp. 965–977, 2018 [p. 970].
112. Zhang M., Sun B., Gu B., Experimental and numerical analyses of matrix shrinkage and compressive behavior of 3-D braided composite under thermo-oxidative ageing conditions, Comp. Struct., Vol. 204, pp. 320-332, 2018 [p. 326].
113. Hu M., Zhang J., Sun B., Gu B.H., Finite element modeling of multiple transverse impact damage behaviors of 3-D braided composite beams at microstructure level, Int. J. Mech. Sci., Vol. 148, pp. 730-744, 2018 [p. 734].
114. 刘亚平, 杨帆, 基于细观力学方法的底部充填封装芯片接合层的热应力计算,《力学季刊》, Vol. 39, No. 1, pp. 39-48, 2018 [p. 41].
115. Toh W., Tan L.B., Tse K.M., Giam A., Raju K., Lee H.P., Tan V.B.C., Material characterization of filament-wound composite pipes, Comp. Struct., Vol. 206, pp. 474-483, 2018 [p. 475].
116. Zhang D., Yu S., Feng G., Xiao X., Ma Q., Qian K., Numerical Identification of Meso Length-Effect and Full-Field Edge-Effect of 3D Braided Composites, Appl. Compos. Mater., Vol. 25, pp. 1133–1154, 2018 [p. 1137].
117. Mustafa G., Afzal Suleman A., Crawford C., Probabilistic first ply failure prediction of composite laminates using a multi-scale M-SaF and Bayesian inference approach, J. Compos. Mater., Vol. 52, No. 2, pp. 169-195, 2018 [p. 188].
118. Ouyang Y., Sun B.Z., Gu B., Finite element analyses on bending fatigue of three-dimesional five-directional braided composite T-beam with mixed unit-cell model, J. Compos. Mater., Vol. 52, No. 9, pp. 1139–1154, 2018 [p. 1146].
119. Tian Z., Yan Y., Ye J., Hong Y., Li X., An Analytical Constitutive Model for Progressive Damage Analysis of Three-Dimensional Braided Composites, Polymer Composites, Vol. 39, No. 11, pp. 4188-4204, 2018 [p. 4189].
120. Cao M., Wang H., Gu B., Sun B., Impact damage and compression behaviours of three-dimensional angle-interlock woven composites after thermo-oxidation degradation, J. Comp. Mater., Vol. 52, No. 15, pp. 2085–2101, 2018 [p. 2088].
121. 欧阳屹伟, 王海楼, 顾伯洪, 孙宝忠, 三维五向编织复合材料T型梁弯曲疲劳应力分布, 《东华大学学报:自然科学版》, Vol. 44, No. 3, pp. 347-353, 2018 [p. 349].
122. Tian Z.Y., Yan Y., Li J., Hong Y., Guo F.L., Progressive damage and failure analysis of three-dimensional braided composites subjected to biaxial tension and compression, Composite Structures, Vol. 185, pp. 496-507, 2018 [p. 497].
123. Tian Z.Y., Yan Y., Hong Y., Guo F.L., Ye J.X., Li J., Improved genetic algorithm for optimization design of a three-dimensional braided composite joint, Composite Structures, Vol. 206, pp. 668-680, 2018 [p. 673].
124. Xing J., Zhao Z., He X., Zhang C., Li Y.L., Mesomechanical Simulation of Rate-Dependent Mechanical Behavior for Triaxially Braided Composites, Earth and Space, 2018 [p. 647].
125. Calvário M., Teixeira A.P., Soares C.G., Uncertainty propagation and sensitivity analysis of a laminated composite beam, in Progress in Maritime Technology and Engineering eds. By Soares G.C. & Santos T.A., CRC Press, pp. 395-402, 2018 [p. 397].
126. Mirdehghan A., Nosraty H., Shokrieh M. M., Ghasemi R., Akhbari M., Micromechanical odeling of the compression strength of three-dimensional integrated woven sandwich composites, J. Indus. Textiles, Vol. 48, No. 9, pp. 1399-1419, 2019 [p. 1407].
127. Guo F., Yan Y., Hong Y., Li X., Ye J., Theoretical Prediction for Thermal Expansion Coefficients of Unidirectional Fiber-Reinforced Composites with Variable Elliptical Cross-Sections, Polymer Composites, Vol. 40, No. 1, pp. 187-201, 2019 [p. 189].
128. Liu S., Zhang J., Shi B., Wang L., Gu B., Sun B., Damage and failure mechanism of 3D carbon fiber/epoxy braided composites after thermo-oxidative ageing under transverse impact compression, Comp. Part B, Vol. 161, pp. 677-690, 2019 [p. 680].
129. Cao M., Zhao Y., Gu B.H., Sun B.Z., Tay T.E., Progressive failure of inter-woven carbon-Dyneema fabric reinforced hybrid composites, Comp. Struct., Vol. 211, pp. 175-186, 2019 [p. 178].
130. Wang J., Wen L., Xiao J., Liang T., Hu X., Li P., The mechanical properties and constitutive model of two woven composites including the influences of temperature, strain rate and damage growth, Comp. Part B, Vol. 161, pp. 502-513, 2019 [p. 507].
131. Zhang N., Zhao Q., Mi Z., Wang Y., Gu B., Axial impact compressive behaviors of a novel 3-D integrated multilayer fabric reinforced composite tubular structures, Thin-Walled Structures, Vol. 134, pp. 363-372, 2019 [p. 365].
132. Yu S., Zhang D.T., Qian K., Numerical Analysis of Macro-Scale Mechanical Behaviors of 3D Orthogonal Woven Composites using a Voxel-Based Finite Element Model, Appl. Comp. Mater., Vol. 26, No. 1, pp. 65-83, 2019 [p. 69].
133. Hong Y., Yan Y., Guo F., Li X., Tian Z., Predicting the Elastic Properties of 3D N-Directional Braided Composite via a Theoretical Method, Mech. Comp. Mater., Vol. 55, No. 1, pp. 95-106, 2019 [p. 99].
134. Ghasemi A.R., Mohammadi‑Fesharaki M., Influence of different parameters on cured shapes and residual stresses of unsymmetric composite laminate reinforced by multi‑wall carbon nanotubes, Polymer Bulletin, 76:5751–5771, 2019 [p. 5759].
135. Ren C., Siddique A., Sun B., Gu B., Differences of transverse impact damages in 3D angle-interlock woven composites between warp and weft directions, International Journal of Damage Mechanics, 28(8): 1203-1227, 2019 [p. 1212].
136. He B., Mi Z.X., Wang Y.J., Gu B.H., Unit cell modeling on torsion damage behavior of a novel three-dimensional integrated multilayer fabric-reinforced composite tubular structure, Textile Research Journal, 89(19-20): 4253-4264, 2019 [p. 4258].
137. Li Y.Y., Pan Z.J ., Gu B.H., Sun B.Z., Numerical analysis of punch shear failure and stress characteristics of three-dimensional braided composite with different braiding angles, Int. J. Damage Mech., 28(9): 1418-1437, 2019 [p. 1422].
138. Zhao Z.Q., Liu P., Chen C.Y., Zhang C., Li Y.L., Modeling the transverse tensile and compressive failure behavior of triaxially braided composites, Comp. Sci.Tech., 172: 96-107, 2019 [p. 99].
139. Amir-Ahmadi S., Ghasemi A.R., Mohammadi M., Evaluation of thermal residual stresses of thin-walled laminated composite pipes to characterize the effects of mandrel materials and addition MWCNTs, Mech. Mater., 136: 103083-1–103083-9, 2019 [p. 103083-5].
140. Zhang S.F., Chen X., Stochastic Natural Frequency Analysis of Composite Structures Based on Micro-Scale and Meso-Scale Uncertainty, Appl. Sci.—BASEL, 9(13): 2603, 2019 [p. 2603-3]
141. Shi B.H., Liu S.K., Siddique A., Zhang J.J., Gu B.H., Sun B.Z., Comparisons on impact fracture behavior between three-dimensional four directional and five directional braided composite materials, Int. J. Damage Mech., 28(7): 990-1020, 2019 [p. 998].
142. 刘鹏, 郭亚洲, 赵振强, 邢军, 张超, 二维三轴编织复合材料压缩失效行为的细观有限元模拟, 《航空学报》, 40(7): 222865, 2019 [p. 222865-5].
143. Yan S., Zhang J.J., Sun B.Z., Gu B.H., In situ measurement of strains at different locations in 3-D braided composites with FBG sensors, Comp. Struct., 230: 111527, 2019 [p. 111527-7].
144. Xing J., Du C., He X., Zhao Z., Zhang C., Li Y., Finite Element Study on the Impact Resistance of Laminated and Textile Composites, Polymers, 11: 1798, 2019 [p. 1798-4].
145. Guo F., Yan Y., Hong Y., Tian Z., Li J., Prediction and optimization design for thermal expansion coefficients of three-dimensional N-directional-braided composites, Polymer Composites, 40(6): 2495-2509, 2019 [P. 2497].
146. Du F., Alghamdi S., Riabbans B., Tan T., An experimental study on the fracture of a unidirectional carbon fiber-reinforced composite under quasistatic torsion, Comp. Part B., 172: 547-554, 2019 [p. 550 Fig. 3].
147. Vignoli L.L., Savi M.A., Pacheco P.M.C.L., Kalamkarov A.L., Comparative analysis of micromechanical models for the elastic composite laminae, Comp. Part B, 174: 106961, 2019 [p. 106961-5]
148. Chang X., Guo X., Ren M., Li T., Micromechanical matrix failure analysis for unidirectional fiber-reinforced composites, Thin-Walled Structures, 141: 275-282, 2019 [p. 279]
149. Hao WF, Huang Z, Zhang L, Zhao GQ, Luo Y, Study on the torsion behavior of 3-D braided composite shafts, Comp. Struct., Vol. 229, pp. 111384-1–111384-9, 2019 [p. 111384-5].
150. Hong Y., Yan Y., Guo F.L., Li J., Tian Z.Y., Experimental and numerical investigation on three-point bending behaviors of unidirectional warp-knitted composites, J. Appl. Poly. Sci., 136(42): 48132, 2019 [p. 48132-7].
151. Zeng H., Liu J.H., Xie Z.M., Sun H.Y., Modeling the shape memory and strength properties of fiber-reinforced shape memory polymer composite laminates, Smart Mater. & Struct., 28(10): 105011, 2019 [p. 105011-3].
152. Romanowicz M., Micromechanics-based prediction of the failure locus of angle-ply laminates subjected to biaxial loading, J. Comp. Mater., Vol. 53, No. 25, pp. 3577-3587, 2019 [p. 3585].
153. Gao X., Siddique A., Sun B., Gu B., Influence of Braiding Angle on Multiple Impact Damages of 3-D Braided Composite along Longitudinal Direction, Appl. Comp. Mater., Vol. 26, pp. 1261–1280, 2019 [p. 1264].
154. Gao X., Siddique A., Sun B., Gu B., Effect of braiding angle on dynamic mechanical properties of 3-D braided rectangular composites under multiple impact compressions, J. Comp. Mater., Vol. 53, No. 13, pp. 1827-1846, 2019 [p. 1832].
155. Dhari R.S., Patel N.P., Wang H.X., Hazell P.J., Progressive damage modeling and optimization of fibrous composites under ballistic impact loading, Mech. Adv. Mater. Struct., p. 1655688, 2019 [p.1655688-8].
156. Hernandez-Perez A., Fuentes-Gutierrez H., Lopez-Santos F., Ledesma-Orozco E.R., Aviles F., An assessment of micromechanical models to predict the elastic constants of unidirectional polymer composites, Mech. Adv. Mater. Struct., on line (DOI: 10.1080/15376494.2019.1645922), pp. 1-19, 2019 [p. 16].
157. Pan Z.X., Wu X.Y., Wu L.W., Temperature rise caused by adiabatic shear failure in 3D braided composite tube subjected to axial impact compression, J. Comp. Mater., Vol. 54, pp. 1305-1326, 2020 [p. 1311]
158. Mahmoudi A., Mohammadi B., Hosseini-Toudeshky H., Damage behaviour of laminated composites during fatigue loading, Fatigue and Fracture of Engineering Materials & Structures, Vol. 43, No. 4, pp. 698-710, 2020 [p. 700].
159. Shyamsunder L, Khaled B, Rajan SD, Goldberg RK, Carney, KS, DuBois P, Blankenhorn G, Implementing deformation, damage, and failure in an orthotropic plastic material model, J. Comp. Mater., 54(4): 463-484, 2020 [p. 464].
160. Seyedalikhani S., Shokrieh M.M., Shamaei-Kashani A.R., A novel dynamic constitutive micromechanical model to predict the strain rate dependent mechanical behavior of glass/epoxy laminated composites, Polyer Testing, 82: 106292, 2020 [p. 106292-4].
161. Liu S.K., Zhang J.J., Chen Z.T., Gu B.H., Sun B.Z., Modeling the coupling effects of braiding structure and thermo-oxidative aging on the high-speed impact responses of 3D braided composites, Thin-Walled Structures, 150: 106705, 2020 [p. 106705-3].
162. Zhao Y., Cao M., Tan H.X., Ridha M., Tay T.E., Hybrid woven carbon-Dyneema composites under drop- weight and steel ball impact, Comp. Struct., 236: 111811, 2020 [p. 111811-3]
163. Cao M., Gu B.H., Sun B.Z., Low-velocity impact and residual flexural behaviors of 2.5-D woven composite under accelerated thermal ageing: Experiment and numerical modeling, Int. J. Damage Mech., 29(3): 413- 434, 2020 [p. 417].
164. 汪久根, 郭昊, 洪玉芳, 陈芳华, 自润滑关节轴承衬垫弹性参数的计算, 《纺织学报》, Vol. 41, No. 6, pp. 61-68, 2020 [p. 62]. Wang J.G., Guo H., Hong Y.F., Chen F.H., Elastic parameters calculation of liners of self-lubricating spherical plain bearings, Journal of Textile Research, Vol. 41, No. 6, pp. 61-68, 2020 [p. 62] (in Chinese).
165. Patel N.P., Sharma D.S., Dhari R.S., The Analytical Study of Stress Concentration Factor in an Infinite Plate at Various Temperatures,in Advances in Material Sciences & Engineering, Lecture Notes in Mechanical Engineering, M. Awang, S. S. Emamian & F. Yusof eds., pp. 353-362, 2020 [p. 355].
166. Vignoli L. L., Savi M. A., Pacheco P.M.C.L., Kalamkarov A.L., Micromechanical analysis of transversal strength of composite laminae, Comp. Struct., Vol. 250, p. 112546, 2020 [p. 112546-3].
167. Vignoli L.L., Savi M.A., Pacheco P.M.C.L., Kalamkarov A.L., Multiscale approach to predict strength of notched composite plates, Comp. Struct., Vol. 253, p. 112827, 2020 [p. 112827-6].
168. Li Y., Li W.G., Ma J.Z., Zheng S.F., Zhao Z.Y., Yang M.Q., Dong P., Chen L.M., Temperature dependent longitudinal tensile strength model of unidirectional fiber reinforced polymer composites considering the effect of matrix plasticity, Extreme Mechanics Letters, Vol. 40, p. 100963, 2020 [p. 100963-2].
169. Vignoli L.L., Savi M.A., Pacheco P.M.C.L., Kalamkarov A.L., Micromechanical analysis of longitudinal and shear strength of composite laminae, J. Comp. Mater., Vol. 54, No. 30, pp. 4853-4873, 2020 [p. 4857].
170. Dhari R.S., Patel N.P., The Response of Composite Laminates Subjected to Blast and Impact Loading at Various Temperatures, J. Dynamic Behavior Mater., Vol. 6, pp. 317-335, 2020 [p. 319].
171. Polyzos E., Katalagarianakis A., Polyzos D., Van Hemelrijck D., Pyl L., A multi-scale analytical methodology for the prediction of mechanical properties of 3D-printed materials with continuous fibres, Additive Manufacturing, Vol. 36, p. 101394, 2020 [p. 101394-6].
172. Wu L.W., Wang W., Jiang Q., Lin J.H., Tang Y.H., Illustrating hybrid effect and damage evolution of carbon/aramid braided composite under low –velocity impact, Composite Structures, Vol. 245, p. 112372, 2020 [p. 112372-3].
173. Wang K, Lu Y, Rao YN, Wei N, Ban J, Peng Y, Yao S, Ahzi S, New insights into the synergistic influence of voids and interphase characteristics on effective properties of unidirectional composites, Composite Structures, Vol. 255, p. 112862, 2021 [p. 112862-5].
174. Dhari RS, Patel NP, Wang HX, Hazell PJ, Numerical investigation of Fibonacci series based bio-inspired laminates under impact loading, Composite Structures, Vol. 255, p. 112985, 2021 [p. 112985-9].
175. Hang C, Cui H, Liu HF, Suo T, Micro/meso-scale damage analysis of a 2.5D woven composite including fiber undulation and in-situ effect, Composite Structures, Vol. 256, p. 113027, 2021 [p. 113027-2].
176. Rao YN, Ban J, Yao S, Wang K, Wei N, Lu Y, Ahzi S, A hierarchical prediction scheme for effective properties of fuzzy fiber reinforced composites with two-scale interphases: Based on three-phase bridging model, Mech. Mater., Vol. 152, p. 103653, 2021 [p. 103653-4].
177. Guedes RM, Validation of trace-based approach to elastic properties of multidirectional glass fibre reinforced composites, Composite Structures, Vol. 257, p. 113170, 2021 [p. 113170-5].
178. Liu W.L., Chen P.H., Theoretical analysis and experimental investigation of the occurrence of fiber bridging in unidirectional laminates under Mode I loading, Composite Structures, Vol. 257, p. 113383, 2021 [p. 113383-2].
179. Ke Y.A., Sun B.Z., Gu B.H., Zhang W., Damage initiation and propagation mechanisms of 3-D angle-interlock woven composites under thermo-oxidative aging, Composite Structures, Vol. 259, p. 113462, 2021 [p. 113462-4].
180. Liu T, Wu XY, Sun BZ, Fan W, Han WL, Yi HL, Investigations of defect effect on dynamic compressive failure of 3D circular braided composite tubes with numerical simulation method, Thin-Walled Structures, Vol. 160, p. 107381, 2021 [p. 107381-5].
181. Yin D.-M., Li B.M., Xiao H.-C., Prediction of three-dimensional elastic behavior of filament-wound composites based on the bridging model, Defence Technology, Vol. 17, No. 2, pp. 609-616, 2021 [p. 611].
182. Rumayshah K.K., Dirgantara T., Judawisastra H., Wicaksono S., Numerical micromechanics model of carbon fiber-reinforced composite using various periodical fiber arrangement, J. Mech. Sci. Tech., Vol. 35, No. 4, pp. 1401-1406, 2021 [p. 1405].
183. Shafiei E., Barbero E.J., Simulation and experimental validation of shear deformation and strength of textile-reinforced composites, Mech. Adv. Mater. Struct., 2021 (on line), p.1933277 [p. 1933277-2].
184. Hu M.Q., Sun B.Z., Gu B.H., Microstructure modeling multiple transverse impact damages of 3-D braided composite based on thermo-mechanical coupling approach, Comp. Part B, Vol. 214, 2021, p. 108741 [p. 108741-2].
185. Shafiei E, Kiasat M.S., Barbero E.J., Rate-dependent viscoplastic modeling and experimental validation of woven glass/epoxy composite materials, Comp. Part B, Vol. 216, 2021, p. 108741 [p. 108827-2].
186. Zhang J.J., Zhang W., Huang S.W., Gu B.H., An experimental-numerical study on 3D angle-interlock woven composite under transverse impact at subzero temperatures, Composite Structures, Vol. 268, 2021, p. 113916 [p. 113936-5].
187. Muyzemnek A.Yu., Ivanova T.N., Kartashova E.D., A Comparison of Experimental and Computation Results of Finding Effective Characteristics of Elastic Properties of Polymer Layered Composites from Carbon and Glass Fabrics, PNRPU Mechanics Bulletin, No. 2, 2021, pp. 88-105 [p. 93].
188. Gholami P., Kouchakzadeh M.A., Farsi M.A., A Continuum Damage Mechanics-based Piecewise Fatigue Damage Model for Fatigue Life Prediction of Fiber-reinforced Laminated Composites, Int. J. Engineering, Vol. 34, No. 6, pp. 1514-1525, 2021 [p. 1517].
189. Mirzaei A.H., Shokrieh M.M., Simulation and measurement of the self-heating phenomenon of carbon/ epoxy laminated composites under fatigue loading, Comp. Part B, Vol. 223, 2021, p. 109097 [p. 109097-5].
190. Gholami P., Farsi M.A., Kouchakzadeh M.A., Stochastic fatigue life prediction of Fiber-Reinforced laminated composites by continuum damage Mechanics-based damage plastic model, Int. J. Fatigue, Vol. 152, 2021, p. 106456 [p. 106456-4].
191. Du C.L., Wang H.F., Zhao Z.Q., Han L., Zhang C., A comparison study on the impact failure behavior of laminate and woven composites with consideration of strain rate effect and impact attitude, Thin-Walled Struct., Vol. 164, 2021, p. 107843 [p. 107843-6].
192. Guo J.H., Sun B.Z., Gu B.H., Zhang W., Failure behaviors of 3D braided composites with defects in different locations under low-velocity impact compression, Textile Research J. (on line), 2021, DOI 10.1177/00405175211030882[p. 6].
193. Sobhani E., Masoodi A.R., Natural frequency responses of hybrid polymer/carbon fiber/FG-GNP nanocomposites paraboloidal and hyperboloidal shells based on multiscale approaches, Aerospace Sci. & Tech., Vol. 119, 2021, p. 107111 [p. 107111-4].
194. Jiang H.Y., Ren Y.R., Jin Q.D., A novel synergistic multi-scale modeling framework to predict micro- and meso-scale damage behaviors of 2D triaxially braided composite, Int. J. Damage Mech. (on line), 2021, pp. 1-34 [p. 6].
195. 杨万庆,王艳超,李能文,徐希宇,叶国锐, 基于桥联模型参数反演的复合材料力学性能预测,《复合材料科学与工程》, 2期, pp. 84-88, 2021 [p. 85].
196. Chu Y., Sun L., Yang X., Wang J., Huang W., Multiscale simulation and theoretical prediction for the elastic properties of unidirectional fiber-reinforced polymer containing random void defects, Poly. Comp., 42: 2958–2972, 2021 [p. 2967].
197. Mirzaei A.H., Shokrieh M.M., Simulation and measurement of the self-heating phenomenon of carbon/epoxy laminated composites under fatigue loading, Comp. Part B., 223: 109097, 2021 [p. 109097-5].
198. Sobhani E., Moradi-Dastjerdi R., Behdinan K., Masoodi A.R., Ahmadi-Pari A.R., Multifunctional trace of various reinforcements on vibrations of three-phase nanocomposite combined hemispherical-cylindrical shells, Comp. Struct., 279: 114798, 2021 [p. 114798-4]
199. Shamaei-Kashani A., Shokrieh M.M., A strain-rate-dependent analytical model for composite bolted joints, Steel Comp. Struct., 41(2): 279-292, 2021 [p. 282].
200. Xun L.M., Wu Y.Y., Huang S.W., Sun B.Z., Gu B.H., Hu M.Q., Degradation of torsional behaviors of 3-D braided thin-walled tubes after atmospheric thermal ageing, Thin-Walled Structures, 170: 108555, 2022 [p. 108555-2].
201. Liu S.K., Wu X.Y., Liu S.Q., Sun B.Z., Gu B.H., Effect of thermo-oxidative ageing on the thermo-mechanical responses of 3D braided carbon fiber/epoxy composites during high-speed impact, J. Textile Institute (on line), 2021, DOI10.1080/00405000.2021.1999574. [p. 5]
202. Ke Y.A., Huang S.W., Guo J.H., Han C.F., Sun B.Z., Gu B.H., Effects of thermo-oxidative aging on 3-D deformation field and mechanical behaviors of 3-D angle-interlock woven composites, Comp. Struct., 281: 115116, 2022 [p. 115116-3]
203. Sattar S., Laredo B.B., Pedrazzoli D., Zhang M.F., Kravchenko S.G., Kravchenko O.G., Mechanical behavior of long discontinuous glass fiber nylon composite produced by in-situ polymerization, Composites A., 154: 106779, 2022 [p. 106779-6].
204. Feng P., Wu Y.W., Liu T.Q., Non-uniform fiber-resin distributions of pultruded GFRP profiles, Comp. Part B., 231: 109543, 2022 [p. 109543-6].
应用了桥联模型的硕士/博士论文列表,文献末尾方括号内的数字表示该论文中出现桥联模型公式或基于桥联模型计算结果的页码
205. 张跃峰, 压电编织复合材料有限元分析, 硕士论文, 2005 [p. 33].
206. 陈磊, 复合材料结构宏、细观强度破坏分析, 硕士论文,南京航空航天大学, 2006 [p. 22].
207. Ryan S., Hypervelocity impact induced disturbances on composite sandwich panel spacecraft structures, PhD Thesis, RMIT University (澳大利亚), 2007 [p. 107].
208. Zand B., Modeling of composite laminates subjected to multiaxial loadings, PhD Thesis, The Ohio State University(美国), 2007 [p. 30].
209. Naik G. N., Development and Design Optimization of Laminated Composite Structures using Failure Mechanism Based Failure Criterion, PhD Thesis, Indian Institute of Science (印度), 2007 [p. 87].
210. Post N. L., Reliability based design methodology incorporating residual strength prediction of structural fiber reinforced polymer composites under stochastic variable amplitude fatigue loading, PhD Thesis, Virginia Polytechnic Institute and State University(美国), 2008 [p. 23].
211. 王秋美, 双轴向纬编针织结构热塑性复合材料拉伸性能研究, 博士论文, 东华大学, 2008 [p. 42].
212. Zabihpoor M., Progressive Flexural Fatigue Failure analysis of Composites through layer failure determination, PhD Thesis, Sharif university of Technology(伊朗), 2008 [p.53].
213. 潘志鹏, 钢筋混凝土等效材料的研究与应用, 硕士论文,哈尔滨工业大学, 2008 [p. 7].
214. 孙立, 缝合复合材料加筋结构压缩载荷作用下的力学响应研究, 硕士论文,南京航空航天大学, 2008 [p. 22].
215. 龚瑜, 细观损伤力学在复合材料特性统计模拟仿真研究中的应用, 硕士论文, 浙江大学, 2010 [p. 34].
216. 王欣荣, 考虑工艺因素的复合材料缠绕压力容器的承载能力分析, 硕士论文, 大连理工大学, 2011 [p. 16].
217. Balea L., Comportement des matériaux composites à renforts odelin élaborés par injection de résine, Doctorat These(博士论文), Universite de Toulouse (法国图卢兹大学), 2011 [p. 40].
218. Thompson L.F., Through-Thickness Compression Testing and Theory of Carbon Fibre Composite Materials, PhD Thesis, the University of Manchester (英国), 2011 [p. 77].
219. 赵琳,基于单胞解析模型与渐进损伤分析的复合材料强度预报, 博士论文, 哈尔滨工业大学, 2012 [p. 44].
220. 靳丽莹, 4D轴编C/C复合材料刚度及强度性能研究, 硕士论文, 哈尔滨工业大学, 2012 [p. 12].
221. Zhang C., Multi-scale characterization and failure modeling of carbon/epoxy triaxially braided composite, PhD Thesis, The University of Akron(美国), 2013 [p. 51].
222. Qian C., Multi-scale odeling of fatigue of wind turbine rotor blade composites, Master Thesis, DelftTechnische Universiteit(荷兰), 2013 [p. 31].
223. 唐占文, 考虑界面相的复合材料宏—细观渐进损伤解析模型研究, 博士论文, 哈尔滨工业大学, 2013 [p. 11].
224. Mudric T., Impact Behaviour of Multifunctional Panels: Experiments and Simulations, PhD Thesis, Università degli Studi di Padova(意大利帕多瓦大学), 2014 [p. 104].
225. 吴利伟, 四步法三维编织复合材料弯曲疲劳性质及损伤演化有限元分析, 博士论文, 东华大学, 2014 [p. 30].
226. 谭巧,形状记忆环氧聚合物及其复合材料的典型力学行为研究,博士论文,哈尔滨工业大学, 2015 [p. 69]
227. 胥小强,纤维增强复合材料层合板振动响应分析与优化, 硕士论文, 南京航空航天大学, 2015 [p. 10]
228. Mustafa G. High fidelity micromechanics-based statistical analysis of composite material properties, PhD Thesis, University of Victoria(巴基斯坦), 2016 [p. 70].
229. 郭晓岗,形状记忆聚合物及其复合材料的力学行为研究, 博士论文, 哈尔滨工程大学, 2016 [p. 97]
230. 刘柳, 抗高冲击载荷CFRP层合结构力学性能研究, 硕士论文,北京理工大学, 2016 [p. 16]
231. 张典堂, 三维五向编织复合材料全场力学响应特性及细观损伤分析, 博士论文, 天津工业大学, 2016 [p. 59]
232. Tai J.-H., Effect of Void Fraction on Transverse Shear Modulus of Advanced Unidirectional Composites, MS Thesis, University of South Florida (美国), 2016 [p. 12].
233. 敬凌霄, 多轴向经编聚酯织物增强膜材力学性能研究, 博士论文, 东华大学, 2016 [p. 27].
234. 刘林林, CNG-2型气瓶缠绕层应力损伤机理研究, 硕士论文, 浙江理工大学, 2016 [p. 16].
235. 邵明正, 层联机织复合材料细观结构建模与仿真, 硕士论文, 天津工业大学, 2017 [p. 26].
236. 杨科林, 网状增强相纤维棒力学性能及制备工艺研究, 硕士论文, 河南科技大学, 2017 [p. 18].
237. 柳见化, 纤维增强形状记忆聚合物复合材料强度性能研究, 硕士论文, 南京航空航天大学, 2017 [p. 13]
238. 王海楼, 三维编织碳纤维/环氧树脂复合材料压缩性质的温度效应和热力耦合机制, 博士论文, 东华大学, 2017 [p. 68].
239. 李冰珂, 三维编织复合材料横向冲击变形和损伤细观结构机理, 硕士论文, 东华大学, 2018 [p. 33]
240. 于姣, 三维编织复合材料冲击加载破坏裂纹演化过程, 硕士论文, 东华大学, 2018 [p. 24].
241. 张松俊, 基于多尺度模型的二维三轴编织复合材料的损伤破坏机理研究, 硕士论文, 湖南大学, 2018 [p. 9].
242. 欧阳屹伟, 三维五向编织复合材料T型梁弯曲疲劳多尺度结构破坏机理, 博士论文, 东华大学, 2018 [p. 40].
243. 张威, 三维编织复合材料T型梁高温场横向冲击热力耦合响应与损伤分析, 博士论文, 东华大学, 2018 [p. 53].
244. Monsås A.B., Long-Term Properties of Interlaminar Shear Strength of Composite Laminates, MS Thesis, Norwegian University of Science and Technology (挪威), 2018 [p. 5].
245. 张曼, 三维编织复合材料热氧老化效应及压缩性质降解机理, 博士论文, 东华大学, 2018 [p. 44].
246. 肖建章, 碳纤维复合材料切削加工力学建模与工艺参数优化研究, 博士论文, 浙江大学, 2018 [p. 30].
B. 他人应用真实应力理论/基体应力集中系数经Peer Review后公开发表的研究文献列表
(注:文献尾部方括号内的数字表示该文献中出现真实应力理论公式、明示采用真实应力理论、文内图或表中数据基于真实应力理论计算所得的页码)
1. Hafiychuk V., Modeling of Microstructure for Uncertainty Assessment of Carbon Fiber Reinforced Polymer Composites, Proceedings of 2016 IEEE Aerospace Conference, DOI:10.1109/AERO.2016.7500807, Big Sky, MT, USA, pp. 1-9, 2016 [p. 3].
2. Xin Haohui, Liu Yuqing, Mosallam A., He Jun, Du Ao, Evaluation on material behaviors of pultruded glass fiber reinforced polymer (GFRP) laminates, Composite Structures, 182: 283-300, 2017 [p. 286].
3. Zhu Xiaojun, Chen Xuefeng, Zhai Zhi, Yang Zhibo, Chen Qiang, The effects of thermal residual stresses and interfacial properties on the transverse behaviors of fiber composites with different microstructures, Sci Eng Compos Mater, 24(1): 41–51, 2017 [p. 44]
4. Toh W., Tan L.B., Tse K.M., Giam A., Raju K., Lee H.P., Tan V.B.C., Material characterization of filament-wound composite pipes, Composite Structures, Vol. 206, pp. 474-483, 2018 [p. 476].
5. Vignoli L.L., Savi M.A., Multiscale Failure Analysis of Cylindrical Composite Pressure Vessel: A Parametric Study, Latin American Journal of Solids and Structures, Vol. 15, e63, 2018 [p. e63-5].
6. Xin H., Mosallam A.S., Liu Y., Veljkovic M., He J., Mechanical characterization of a unidirectional pultruded composite lamina using micromechanics and numerical homogenization, Construction and Building Materials, Vol. 216, pp. 101-118, 2019 [p. 115].
7. Ren M.-F., Zhang X.-W., Huang C., Wang B., Li T., An integrated macro/micro-scale approach for in situ evaluation of matrix cracking in the polymer matrix of cryogenic composite tanks, Composite Structures, Vol. 216, pp. 201-212, 2019 [p. 206].
8. 杜志鸿, 倪新华, 刘协权, 于金凤, 吴永胜, 纳观界面应力集中对复合晶粒断裂应力的影响, 《哈尔滨工业大学学报》, Vol. 51, No. 5, pp. 118-124, 2019 [p. 122].
9. Vignoli L.L., Savi M.A., Pacheco P.M.C.L., Kalamkarov A.L., Micromechanical analysis of transversal strength of composite laminae, Composite Structures, Vol. 250, p. 112546, 2020 [p. 112546-3].
10. Vignoli L.L., Savi M.A., Pacheco P.M.C.L., Kalamkarov A.L., Multiscale approach to predict strength of notched composite plates,Composite Structures, Vol. 253, p. 112827, 2020 [p. 112827-15].
11. Vignoli L.L., Savi M.A., Pacheco P.M.C.L., Kalamkarov A.L., Micromechanical analysis of longitudinal and shear strength of composite laminae, Journal of Composite Materials, pp. 1–17, http://dx.doi.org/10.1177/00219983209363432020 [p. 5].
12. Jiang H.Y., Ren Y.R., Jin Q.D., A novel synergistic multi-scale modeling framework to predict micro- and meso-scale damage behaviors of 2D triaxially braided composite, Int. J. Damage Mech., pp. 1-34, 2021, DOI: 10.1177/ 10567895211033974. [p. 9].
13. Liu W.L., Chen P.H., Theoretical analysis and experimental investigation of the occurrence of fiber bridging in unidirectional laminates under Mode I loading, Composite Structures, Vol. 257, p. 113383, 2021 [p. 113383-2].
14. Sun Y., Liu Y., Wang C., Zuo Y., Xin H., Web buckling mechanism of pultruded GFRP bridge deck profiles subjected to concentrated load, Structures, 34: 3789- 3805, 2021 [p. 3792].
科研项目:
1. 国家自然科学基金重点项目,11832014,桥联模型发展的几个基本问题研究,2019-01至2023-12,310万,主持.
2. 国家自然科学基金面上项目,11472192,非理想界面桥联理论及横向压缩下基体的应力集中系数,2015-01至2018-12,110万,主持.
3. 国家自然科学基金面上项目,11272238,复合材料中基体的现场强度研究,2013-01至2016-12,92万,主持.
4. 教育部博士点基金项目(博导类),20120072110036,界面对基体现场强度的影响,2013-01至2015-12,12万,主持.
5. 国家自然科学基金面上项目,50773054,纳米纤维增强有机玻璃的设计与制备,2008-01至2010-12,32万,主持.
6. 国家高技术研究发展计划(“863”计划)专题,2006AA03Z555,大型风力机叶片一次成型设计与制备,2006-12至2008-12,76万,主持.
7. 上海浦江人才计划专项,05PJ14093,复合材料风力机叶片的低成本制造技术研究,2005-12至2007-09,20万,主持.
8. 教育部博士学科点专项基金,20040247008,纤维增强复合材料结构受横向冲击的极限承载能力,2005-01至2008-12,6万,主持.
9. 上海市科委纳米专项,0352nm091,共轴复合连续纳米纤维的制备研究,2004-01至2005-12,30万,主持.
荣誉和奖励:
1. 桥联模型,2019年首届中国复合材料学会科学技术奖二等奖
2. 连续纤维增强复合材料的细观力学弹塑性本构理论,2020年.中国力学学会自然科学二等奖.
Dr. Zheng-Ming Huang, Professor
School of Aerospace Engineering and Applied Mechanics
Tongji University
E-mail: huangzm@tongji.edu.cn
Telephone: (+86)021-65985373
Education
Dec. 1976 to Dec. 1979: Undergraduate student, majored in Radio Structures, Equipments & Technology, Northwest Institute of Telecommunication Engineering, China.
Sept. 1980 to March 1983:MS student, majored in Solid Mechanics, Huazhong University of Science & Technology, China, MS degree awarded on September 12, 1983.
Jan. 1996 to Nov. 1997: PhD student, majored in Materials Science and Engineering, National University of Singapore, PhD degree awarded on August 16, 1999.
Employment
Dec. 1979 to Aug. 1980: Engineer Assistant, No. 301 Research Institute, Daxian, China
April 1983 to July 1986: Lecturer Assistant, Department of Mechanics, Huazhong University of Science & Technology, Wuhan, China.
Aug. 1986 to July 1992: Lecturer, Department of Mechanics, Huazhong University of Science & Technology, Wuhan, China.
Aug. 1992 to Dec. 1995: Associate Professor, Department of Mechanics, Huazhong University of Science & Technology, Wuhan, China.
Jan. 1998 to July 1999: Research Engineer, Polymer Lab., Department of Mechanical & Production Engineering, National University of Singapore, Singapore.
Aug. 1999 to Feb. 2003: Research Fellow, Polymer Lab., Faculty of Engineering, National University of Singapore, Singapore.
May 2002 to April 2007: Chang-Jiang Scholar Professor, School of Aerospace Engineering & Applied Mechanics (formerly Department of Engineering Mechanics), Tongji University, Shanghai, China.
May 2007 to present: Professor, School of Aerospace Engineering & Applied Mechanics, Tongji University, Shanghai, China.
Research Areas & Achievements
1. Mechanics of Composite Materials
Solid mechanics investigates the constitutive relations, deformations, failures and strengths of materials, which can be classified into isotropic and anisotropic. Whereas the mechanics theories for isotropic materials have been nearly matured, those for anisotropic or composite materials are essentially not well established except for linear elasticity. A fundamental reason is that only homogenized stresses of a composite can be obtained from the existing theories. In mechanics of continuum media, a stress at a point is defined as averaged quantity of those on an infinitesimally small element containing the point. For a composite, however, such an element cannot be infinitesimal and the resulting stress is a homogenized or approximated value. But, a composite property must be evaluated upon the true stresses. So is done an elastic property as well. Only because both the homogenized and the true stresses are in an elastic range, are the properties calculated based on both of them the same, giving a false impression that an elastic property of the composite is independent of the true stresses. Almost by Prof. Huang’s sole efforts, the whole mechanics of composites will be changed owing to his following groundbreaking achievements.
(1) Establishment of the unified elastic-plastic constitutive and internal stress evaluation theory, Bridging Model, for a composite reinforced with any continuous fibers, short fibers or particles, as illustrated in his representative publication Nos. 1, 4, 11 and 16. The practice is the sole criterion for testing the truth of a theory. The more the other scholars applying the theory are the more thoroughly the theory will be tested, and hence more valuable it will become. So far, more than 240 publications have been made by the other scholars who used Bridging Model in their studies. A list of the publications is summarized subsequently.
(2) Pioneer (from 0 to 1) and systemic development of the matrix true stress theory, which can be seen in his representative publication Nos. 1, 4, 12 and 13. He found that the true and the homogenized stresses of the fiber are the same, whereas the true stresses of the matrix are obtained by its homogenized counterparts multiplied by the corresponding stress concentration factors (SCFs) of the matrix in the composite. However, such a SCF cannot be determined as per the classical way. Instead, it must be calculated as a line-averaged stress divided by a volume averaged one. Though the true stress theory has been established only recently, it has been applied 14 times by the other people in their peer reviewed publications. They are listed in the following.
(3) Set up of the interlaminar matrix stress modification method, as seen in his representative publication Nos. 2 and 6. Interlaminar fracture or delamination is one of the most often occurred failure modes in a laminated structure such as composite laminate, hybrid plate made of metal sheets and composite panels, honeycomb or foam sandwich structure, etc. Almost all of the existing methods for predicting delamination have two major drawbacks. First, some of the required inputs do not have standards for measurements, implying that either the measurements are difficult to perform, or they are hard to repeat, or the measurement deviations are bigger than acceptable. Second, iterations are almost inevitable at each solution step, consuming a huge amount of computation, and, even worse, the resulting data may possibly be false without a caution. By the interlaminar stress modification method, the analysis for delamination can be carried out as though it be for a static problem. Not only the required input data are reduced to minimum, the measurements of which all have standards to follow, but also no iteration is requested and an always correct solution can be obtained.
(4) Establishment of the physics based failure criteria for the matrix failures in a composite. Please refer to his representative publication Nos. 1, 3, 4 and 5. Strength theories of materials have been investigated for hundreds of years. The existing theories are essentially developed based on mathematical, physical, or phenomenological principals. Mathematically, the failure locus of a material is a multi-function of its stress and strain components. Expand the function into a power series and keep the terms of only a low order. Letting the expansion coefficients be determined from the measured data under simple loads, a failure criterion such as Tsai-Wu’s model is resulted. By the physical principal, a failure stress state on the material is plotted to a Mohr’s circle. Varying the load combinations, a series of failure circles are obtained. The common tangents to all such circles constitute a failure envelope. A necessary and sufficient condition for the material subjected to any stress state to attain a failure is that the Mohr’s circle for the state is in an inward tangent to the failure envelope. Approximating the infinite experiments based failure envelope by low-order polynomials, we established the matrix’s failure criteria. Although most of the strength theories for materials are developed phenomenologically, it is evident from a foundation viewpoint that the physical principal is over the mathematical one, which is over the phenomenological principal.
(5) Based on Bridging Model and the matrix true stress theories, a number of long-standing and challenging problems in the composite community have been resolved, see his representative publication Nos. 1, 4, 7, 9 and 10. They include when an interface debonding between the fiber and matrix in a composite subjected to an arbitrary load occurs? Why an advanced composite essentially behaves linearly elastic up to failure under a longitudinal or transverse tension, but its nonlinear shear deformation can be even bigger than the elastic-plastic deformation of the pure matrix? Why the strengths of the fibers from, e.g., T300 to T1100 increase significantly, but the longitudinal compressive strengths of the resulting composites are essentially the same? …
(6) It has been explored in his representative publication 8 that the less the fiber number in a representative volume element (RVE) of a composite is the more accurate the thus obtained composite mechanical property will be, negating the statement in a multiscale modeling for composite properties that a sufficient large number of fibers should be contained in the RVE.
2. Constitutive relation for hyperelastic materials
Rubber-like hyperelastic materials can have a strain up to several hundreds and even more than one thousand. Their constitutive relations are generally given by polynomial and Ogden models in series forms. Investigations have shown (see, e.g, the theory manual of ABAQUS) that fitting the hyper-elastic constants involved in these models to a single type of test data can result in inaccurate and even unstable response in the other deformation conditions. A fundamental reason is that no one by one correspondence between the constants and the experimental data exist. Constitutive relation in hyperelasticity is an example in mechanics of isotropic materials that lacks of full maturity. On the basis of isotropy, always elasticity and volume incompressibility, an incremental constitutive model for hyperelastic materials has been established by Prof. Huang in his representative publication Nos. 17 and 18. All of the material parameters involved have a unique correspondence with the experimental data. Once determined from any kind of test, the model’s predictions for the material deformations under any other load condition correlates well with the measured counterparts.
3. Fabrication of nano/ultrafine fibers
Electrospinning has been recognized to be the only available technique to fabricate continuous nano or ultrafine fibers, but only solid ones from one-phase material were able to be done then. Prof. Huang was a co-inventor for an elctrospinning technique to fabricate core-shell double-layer compound ultrafine fibers from two different phase materials, as described in his representative publication Nos. 14 and 20.
4. Others
Establishment of a necessary and sufficient condition for the existence of a solution to an operator equation (for Hilbert’s twentieth problem), as seen in his representative publication No. 19.
Invention of the new technique of an Ideal Blade End Connection and Trapezoid End Structure for design and fabrication of wind turbine blades, as shown in his representative publication No. 21, with which the material consumption for an existing blade with the same material system and the same blade shape can be reduced by 10%.
Publication of 215 peer reviewed journal papers, 4 books, 1 edited book, 8 book chapters, and 12 awarded patents. One of his papers (the representative publication No. 15) has gained the SCI citations of more than 6000 times by other people.
Courses Teaching
Mechanics of Composite Materials
Understanding of Composite Materials
Introduction to Modern Mechanics
Representative Publications
1. Huang Z.-M.*, Failures and strengths of composite materials, Science Press, Beijing, 2018.
2. Zhou J.C., Huang Z.-M.*, Predicting delamination of hybrid laminate via stress modification on interlaminar matrix layer, Engineering Fracture Mechanics (on line), p. 108333, 2022.https://doi.org/10.1016/j.engfracmech.2022.108333
3. Wang L.-S., Huang Z.-M.*, On strength prediction of laminated composites, Composites Science and Technology, 219: 109206, 2022.
4. Huang Z.-M.*, Constitutive relation, deformation, failure and strength of composites reinforced with continuous/short fibers or particles, Composite Structures, 262: 113279, 2021.
5. Huang Z.-M.*, Wang L.-S., Jiang F., Xue Y. D., Detection on matrix induced composite failures, Composites Science and Technology, 205: 108670, 2021.
6. Huang Z.-M.*, Li P., Prediction of laminate delamination with no iteration, Engineering Fracture Mechanics, 238: 107248, 2020.
7. Zhou Y, Huang Z.-M.*, Shear deformation of a composite until failure with a debonded interface, Composite Structures, 254: 112797, 2020.
8. Huang Z.-M.*, On micromechanics approach to stiffness and strength of unidirectional composites, Journal of Reinforced Plastics and Composites, 38: 167–196, 2019.
9. Zhou Y., Huang Z.-M.*, Failure of fiber-reinforced composite laminates under longitudinal compression, Journal of Composite Materials, 53(24): 3395–3411, 2019.
10. Zhou Y., Huang Z.-M.*, Liu L., Prediction of interfacial debonding in fiber-reinforced composite laminates, Polymer Composites, 40(5): 1828-1841, 2019.
11. Huang Z.-M.*, Zhang C.C., Xue Y.D., Stiffness prediction of short fiber reinforced composites, International Journal of Mechanical Sciences, 161-162: 105068, 2019.
12. Huang Z.-M.*, Xin L.-M., In situ strengths of matrix in a composite, Acta Mechanica Sinica, 33: 120–131, 2017.
13. Huang Z.-M.*, Liu L., Predicting strength of fibrous laminates under triaxial loads only upon independently measured constituent properties, International Journal of Mechanical Sciences, 79: 105–129, 2014.
14. Zhang Y.Z.*, Huang Z.-M.*, Xu XJ, Lim CT, Ramakrishna S, Preparation of core-shell tructured PCL-r-gelatin bi-component nanofibers by coaxial electrospinning, Chemistry of Materials, 16(18): 3406-3409, 2004.
15. Huang Z.-M.*, Zhang Y.-Z., Kotaki M., Ramakrishna S., A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites, Composites Science and Technology, 63: 2223-2253, 2003.
16. Huang Z.-M.*, Simulation of the mechanical properties of fibrous composites by the Bridging micromechanics Model, Composites Part A, 32(2): 143-172, 2001.
17. Huang Z.-M.*, A Unified Micromechanical Model for the Mechanical Properties of Two Constituent Composite Materials, Part IV: Rubber-Elastic Behavior, Journal of Thermoplastic Composite Materials, 13(2): 119-139, 2000.
18. Huang Z.-M.*, Ramakrishna S, Tay AAO, Modelling of Stress-Strain Behavior of a Knitted Fabric Reinforced Elastomer Composite, Composites Science and Technology, 60(5): 671-691, 2000.
19. Huang Z.-M.*, A necessary and sufficient condition for the existence of a solution to an operator equation, Nonlinear Analysis, Theory, Methods & Applications, 13(7): 829-832, 1989.
20. Huang Z.-M., Zhang Y.Z., Co-axial compound continuous nano-/micro-fibers and the technique to fabricate them, Chinese Awarded Patent No. ZL 200310108130.9, 2003.
21. Huang Z.-M., Wind turbine blade structure and the technique to make it as well as its potential applications, Chinese Awarded Patent No. ZL200910197175.5, 2009.
Publications by other people using Huang’s theories:
A. List of peer reviewed publications by researchers other than the author applying Bridging Model to dealing with mechanics of composite problems
(Note: Nos. 1 to 204 were peer-reviewed journal papers in which Bridging Model was applied, whereas Nos. 205 to 246 were PhD’s or Mater’s theses with Bridging Model as a research tool. The number within the brackets at the end of each publication indicates a page number of the publication on which the Bridging Model’s formulae were cited, or Bridging Model was mentioned to have been used, or a data table or figure was shown containing Bridging Model’s solutions)
1. Luccioni B.M., Oller S., MODELO PARA COMPUESTOS REFORZADOS CON FIBRAS, Mecnica Computacional, Vol. 22, pp. 2049-2063, 2003 [p. 2060].
2. Soden P.D., Kaddour A.S., Hinton M.J., Recommendations for designers and researchers resulting from the world-wide failure exercise, Comp. Sci. Tech., Vol. 64, No. 3-4, pp. 589-604, 2004 [p. 593].
3. Kaddour AS, Hinton MJ, Soden PD. A comparison of the predictive capabilities of current failure theories for composite laminates: additional contributions, Comp. Sci. Tech., Vol. 64, No. 3-4, pp. 449-476, 2004 [p. 451]
4. Hinton M.J., Kaddour A.S., Soden P.D., A further assessment of the predictive capabilities of current failure theories for composite laminates: comparison with experimental evidence, Comp. Sci. Tech., Vol. 64, No. 3-4, pp. 549-588, 2004 [p. 552].
5. Pochiraju K., Jovanovic V., Modeling Material Property Heterogeneity in Fiber Reinforced Injection Molded Plastic Parts, Polymer Composites, 26: 98-113, 2005 [p.106].
6. Zabihpoor M., Adibnazari S. and Abedian A., Evaluation and development of bridging micromechanical model using mechanical properties of composite materials characterization tests, Iranian Journal of Polymer Science and Technology (Persian), Vol. 18, No. 6, pp. 369-376, 2005 [p.370].
7. Zhou R., Hu H., Chen N., Feng X., An Experimental and Numerical Study on the Impact Energy Absorption Characteristics of the Multiaxial Warp Knitted (MWK) Reinforced Composites, J. Comp. Mater., Vol. 39, No. 6, pp. 525-542, 2005 [p. 534].
8. 吕毅,吕国志,吕胜利, 细观力学方法预测单向复合材料的宏观弹性模量,《西北工业大学学报》, 24卷, pp. 787-790, 2006 [p.788].
9. Chun H.J., Kim H.W., Byun J.H., Effects of through-the-thickness stitches on the elastic behavior of multi-axial warp knit fabric composites, Composite Structures, Vol. 74, pp. 484 -494, 2006 [p. 486].
10. 李晨,许希武, 缝合复合材料层板三维纤维弯曲模型及压缩强度预报,《复合材料学报》, 23卷, pp. 179-185, 2006 [p. 183].
11. 李晨,许希武, 缝合复合材料层板抗拉强度的预测,《机械工程材料》, 30卷, pp. 10-12, 2006 [p. 12].
12. Chun H.-J., Kim H.-W., Byun J. H., Elastic Behaviors of Stitched Multi-axial Warp Knit Fabric Composites, Key Engineering Materials, Vols. 306-308, pp 817-822, 2006 [p. 819].
13. Luccioni B.M., Constitutive Model for Fiber-Reinforced Composite Laminates, J. Appl. Mech. ASME, Vol. 73, pp. 901-910, 2006 [p. 905].
14. Zabihpoor M. and Adibnazari S., Simulation of fiber/matrix debonding in unidirectional composites under fatigue loading, Journal of Reinforced Plastics and Composites, Vol. 26, pp. 743-760, 2007 [p. 747].
15. Zabihpoor M., Adibnazari S., A micromechanics approach for fatigue of unidirectional fibrous composites, Iranian Polymer Journal, Vol. 16, pp. 219-232, 2007 [p. 222].
16. 徐焜, 许希武, 田静, 小编织角三维编织复合材料拉伸强度模型,《航空学报》, 28卷, pp. 294-300, 2007 [p. 296].
17. Kumar P., Chandra R., Singh S.P., Interphase Effect on Damping in Fiber Reinforced Composites, ICCES, Vol. 4, pp. 67-72, 2007 [p. 68].
18. González A., Graciani E., París F., Prediction of in-plane stiffness properties of non-crimp fabric laminates by means of 3D finite element analysis, Composites Science and Technology, Vol. 68, pp. 121-131, 2008 [p. 126].
19. Li D., Lu Z., Lu W., Theoretical prediction of stiffness and strength of three-dimensional and four-directional braided composites, Applied Mathematics and Mechanics, Vol. 29, pp. 163-170, 2008 [p. 165].
20. 李典森, 卢子兴, 卢文书, 三维四向编织复合材料刚度和强度的理论预测,《应用数学和力学》, 29卷, pp. 149-156, 2008 [p. 151].
21. 熊璇, 吕国志, 吕毅, 细观力学法预测单向复合材料的有效热膨胀系数,《强度与环境》, 35卷, pp. 24-30, 2008 [p. 26].
22. Ryan S., Wicklein M., Mouritz A., Riedel W., Schafer F., Thoma K., Theoretical prediction of dynamic composite material properties for hypervelocity impact simulations, International Journal of Impact Engineering, Vol. 36, pp. 899-912, 2009 [p. 901].
23. Li D., Lu Z., Chen L., Li J.L., Microstructure and mechanical properties of three-dimensional five-directional braided composites, International Journal of Solids and Structures, Vol. 46, pp. 3422-3432, 2009 [p. 3427].
24. 魏丽梅, 李典森, 基于桥联模型预报三维五向编织复合材料的刚度和强度,《产业用纺织品》, 27卷, pp. 21-25, 2009 [p. 22].
25. Shaw A., Sriramula S., Gosling P.D., Chryssanthopoulos M.K., A critical reliability evaluation of fibre reinforced composite materials based on probabilistic micro and macro-mechanical analysis, Composites Part B, Vol. 41, pp. 446-453, 2010 [p. 448].
26. 常新龙, 李正亮, 胡宽, 孙涛, 应用桥联模型预测复合材料吸湿老化剩余强度, 《复合材料学报》, 27卷, pp. 208-212, 2010 [p. 209].
27. 马元春, 韩海涛, 卢子兴, 卢文书, 邱涛. 缝纫泡沫夹芯复合材料失效强度的理论预测与试验验证,《复合材料学报》, 27卷, pp. 108-115, 2010 [p. 111].
28. Kumar P., Chandra R., Singh S.P., Interphase effect on fiber-reinforced polymer composites, Composite Interfaces, Vol. 17, pp. 15-35, 2010 [p. 17].
29. Zhang Y.X., Zhang H.S., Multiscale finite element modeling of failure process of composite laminates, Composite Structures, Vol. 92, pp. 2159-2165, 2010 [p. 2160].
30. Jin L., Hu H., Sun B., Gu B., A simplified microstructure model of bi-axial warp-knitted composite for ballistic impact simulation, Comp. Part B, Vol. 41, pp. 337–353, 2010 [p. 342].
31. Ma Y.C., Han H.T., Lu Z.X., Lu W.S., Qiu T., Guo J.H., Theoretical prediction of the stiffness and failure strength of stitched foam-core sandwich composites, Polymers & Polymer Composites, Vol. 19, pp. 303-311, 2011 [p. 306].
32. Kumar P., Chandra R., Singh S.P., Measurement of damping of fiber reinforced composite material, Journal of Materials Science and Engineering B, Vol. 1, pp. 555-564, 2011 [p. 557].
33. 常新龙, 李正亮, 陈特熙, 方鹏亚. 激光-机械载荷联合作用下复合材料层合板的破坏规律分析,《红外与激光工程》, 40卷, pp. 1935-1939, 2011 [p. 1936].
34. Nehme S., Hallal A., Fardoun F., Younes R., Hagege B., Aboura Z., Benzeggagh M., Chehade F.H., Numerical/analytical methods to evaluate the mechanical behavior of interlock composites, Journal of Composite Materials, Vol. 45, pp. 1699-1716, 2011 [p. 1716].
35. 王春敏, 针织复合材料力学性能的研究, 《材料导报》, Vol. 25, No. 18, pp. 277-280, 2011 [p. 280]
36. 覃海英, 刘晓红. 铺设方法对风机叶片复合材料力学性能的影响, 《装备制造技术》, No. 5, pp. 13-15, 2011 [p. 8]
37. Younes R., Hallal A., Fardoun F., Chehade F.H., Comparative review study on elastic properties modeling for unidirectional composite materials, in: Composites and Their Properties, Hu N. ed, InTech, Chapter 17, http://dx.doi.org/10.5772/50362, pp. 391-408, 2012 [p. 396].
38. Shokrieh M.M., Mazloomi M.S., A new analytical model for calculation of stiffness of three-dimensional four-directional braided composites, Composite Structures, Vol. 94, pp. 1005-1015, 2012 [p. 1011].
39. Shokrieh M.M., Nasir V., Karimipour H., A micromechanical study on longitudinal strength of fibrous composites exposed to acidic environment, Materials & Design, Vol. 35, pp. 394- 403, 2012 [p. 395].
40. Bhalchandra S.A., Shiradhonkar Y.S., Determination of properties of transversely isotropic lamina using micromechanics approach, Elixir Cement & Con. Com., Vol. 48, pp. 9588-9593, 2012 [p. 9591].
41. Liu L., Zhou Y., Pan S., Experimental and analysis of the mechanical behaviors of multi-walled nanotubes/ polyurethane nanoweb reinforced epoxy composites, Journal of Reinforced Plastics and Composites, Vol. 32, pp. 823-834, 2013 [p. 830].
42. 周宏伟,易海洋,薛东杰,段志强,张春花, Mishnaevsky J.L., 纤维方位角对玻纤复合材料破坏机理的影响研究,《中国科学: 物理学\力学\天文学》, 43卷, pp. 167-176, 2013 [p. 169].
43. Guo Q., Zhang G., Li J., Process parameters design of a three-dimensional and five-directional braided composite joint based on finite element analysis, Materials & Design, Vol. 46, pp. 291-300, 2013 [p. 294].
44. 李剑峰, 燕瑛, 复合材料热膨胀性能的细观分析模型与预报, 《北京航空航天大学学报》, 39卷, pp. 1069-1073+1085, 2013 [p. 1070].
45. Guedes R.M., Xavier J., Understanding and predicting stiffness in advanced fibre-reinforced polymer (FRP) composites for structural applications, in: Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications Ed. By J. Bai, Woodhead Publishing Ltd., Chapter 11, pp. 298-360, 2013 [p. 322].
46. Ding J., Liu J., Li C., Yi H., Failure Mechanism of Layered Salt Rock in Three-point Bending Test, Applied Mechanics and Materials, Vol. 256-259, pp. 48-56, 2013 [p. 51].
47. Kaddour A.S., Hinton M.J., Maturity of 3D failure criteria for fibre reinforced composites: Comparison between theories and experiments: Part B of WWFE-II, J. Comp. Mater., Vol. 47, No. 6-7, pp. 925-966, 2013 [p. 929].
48. Marino M., Francesca Nerilli, Vairo G., A finite-element approach for the analysis of pin-bearing failure of composite laminates, Frattura ed Integrità Strutturale, Vol. 29, pp. 241-250, 2014 [p. 242].
49. 刘万雷, 常新龙, 张晓军, 胡宽, 纤维增强复合材料宏观性能预测与可靠度分析, 《玻璃钢/复合材料》, 10期, pp. 42-47, 2014 [p. 43].
50. Wu L., Gu B., Fatigue behaviors of four-step three-dimensional braided composite material: a meso-scale approach computation, Textile Research Journal, Vol. 84, pp. 1915-1930, 2014 [p. 1919].
51. Zhang C., Binienda W.K., Kohlman L.W., Analytical model and numerical analysis of the elastic behavior of triaxial braided composites, Journal of Aerospace Engineering, Vol. 27, pp. 473-483, 2014 [p. 476].
52. Tan Q., Liu L., Liu Y., Leng J.S., Thermal mechanical constitutive model of fiber reinforced shape memory polymer composite: based on bridging model, Composites Part A, Vol. 64, pp. 132-138, 2014 [p. 134].
53. Shokrieh M.M., Mosalmani R., Omidi M.J., Strain-rate dependent micromechanical method to investigate the strength properties of glass/epoxy composites, Composite Structures, Vol. 111, pp. 232-239, 2014 [p. 234].
54. Sun B., Pan H., Gu B., Tensile impact damage behaviors of co-woven-knitted composite materials with a simplified microstructure model, Textile Research Journal, Vol. 84, pp. 1742 -1760, 2014 [p. 1744].
55. Bhalchandra S.A., Shiradhonkar Y., Daimi S.S., Comparison of Properties of Transversely Isotropic Lamina Using Method of Cells and Composite Cylinder Assemblage, International Journal of Advanced Science and Technology, Vol. 64, pp. 43-58, 2014 [p. 49].
56. Vašíček M., Computational Prediction of the Mechanical Properties of a 2D Triaxially Braided Composite, Journal of Middle European Construction & Design of Cars, 12(2): 10-16, 2014 [p. 12].
57. 张中伟,严静,孙宝忠,钱建华,三维编织复合材料矩形梁与T型梁准静态弯曲实验及有限元分析,《东华大学学报(自然科学版)》,40(5): 522-526, 2014 [p. 524].
58. Nerilli F., Tarquini L., Marino M., Vairo G., Numerical Modeling of Failure Modes in Bolted Composite Laminates, Proceedings of the International Conference on Numerical Analysis and Applied Mathematics, AIP Conf. Proc. 1648, pp. 570019-1–570019-5, 2014 [p. 570019-2].
59. Zhao L., Zhang B.M., Qing X.L., Prediction of the Biaxial Failure Strength of Composite Laminates with Unit Cell Analytic Model, J. Wuhan Univ. Tech. –Mater. Sci. Ed., Vol. 29, No. 5, pp. 923-927, 2014 [p. 925].
60. Ghasemi A.R., Mohammadi M.M., Moradi M., Investigation of Mechanical and Thermal Properties of Polymer Composites Reinforced by Multi-Walled Carbon Nanotube for Reduction of Residual Stresses, Iranian J. Polym. Sci. Tech., Vol. 27, No. 3, pp. 213-230, 2014 [p. 219].
61. Shokrieh M.M., Mosalmani R., Omidi M.J., A strain-rate dependent micromechanical constitutive model for glass/epoxy composite, Composite Structures, Vol. 121, pp. 37-45, 2015 [p. 39].
62. Xu J., Lomov S.V., Verpoest I., A progressive damage model of textile composites on meso-scale using finite element method: Fatigue damage analysis, Computers & Structures, Vol. 152, pp. 96-112, 2015 [p. 105].
63. Nerilli F., Marino M., Vairo G.., A numerical failure analysis of multi-bolted joints in FRP laminates based on basalt fibers, Procedia Engineering, Vol. 109, pp. 492-506, 2015 [p. 495].
64. Zhang D., Sun Y., Wang X., Chen L., Meso-scale finite element analyses of three-dimensional five-directional braided composites subjected to uniaxial and biaxial loading, Journal of Reinforced Plastics & Composites, Vol. 34, pp. 1989-2005, 2015 [p. 1991].
65. Ghasemi A.R., Mohammadi M.M., Mohandes M., The Role of Carbon Nanofibers on Thermo Mechanical Properties of Polymer Matrix Composites and Their Effect on Reduction of Residual Stresses, Composites Part B, Vol. 77, pp. 519-527, 2015 [p. 522].
66. Wu L., Gu B., Sun B., Finite element analyses of four-step 3D braided composite bending damage using repeating unit cell model, International Journal of Damage Mechanics, Vol. 24, pp. 59–75, 2015 [p. 66].
67. Sun J., Zhou G., Zhou C., Microstructure and mechanical properties of 3D surface-core 4-directional braided composites, Journal of Materials Science, Vol. 50, pp. 7398-7412, 2015 [p. 7406].
68. Qi W., Xu X., Analytical method of dynamic properties of FRP based on micromechanical level, Chinese Journal of Aeronautics, Vol. 28, pp. 939–945, 2015 [p. 941].
69. Niknami A., Shariyat M., Coupled Thermoelasticity Impact Response Analysis of Composite Plates with SMA Wires in Thermal Environments, Iranian Journal of Mechanical Engineering, Vol. 16, pp. 73-96, 2015 [p. 80].
70. Zhang D., Sun Y., Wang X., Chen L., Prediction of macro-mechanical properties of 3D braided composites based on fiber embedded matrix method, Composite Structures, Vol. 134, pp. 393-408, 2015 [p. 402].
71. Zhang S., Zhang C., Chen X., Effect of statistical correlation between ply mechanical properties on reliability of fibre reinforced plastic composite structures, Journal of Composite Materials, Vol. 49, No. 23, pp. 2935-2945, 2015 [p. 2936].
72. Huang B., Sun L., Wang L., Li T., Effect of fiber waviness and cluster on effective elastic properties of fiber reinforced composites, Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition, pp. 1-9, 2015 [p. 3]
73. Tomlinson G., Siegwolf R.T.W., Buchmann N., Khorashadizadeh S.N., New approach for fatigue life prediction of composite plates using micromechanical bridging model, Journal of Composite Materials, Vol. 49, pp. 309–319, 2015 [p. 310].
74. Niknami A., Shariyat M., Refined constitutive, bridging, and contact laws for including effects of the impact-induced temperature rise in impact responses of composite plates with embedded SMA wires, Thin-Walled Structures, Vol. 106, pp. 166-178, 2016 [p. 169].
75. Hafiychuk V., Modeling of Microstructure for Uncertainty Assessment of Carbon Fiber Reinforced Polymer Composites, Aerospace Conference, IEEE Xplore, pp. 1-9, 2016 [p. 3].
76. Zhang S., Zhang L., Wang Y., Tao J., Chen X., Effect of ply level thickness uncertainty on reliability of laminated composite panels, Journal of Reinforced Plastics & Composites, Vol. 35, pp. 1387-1400, 2016 [p. 1390].
77. Liu W., Chang X., Zhang X., Zhang Y., Multiscale model for progressive damage prediction of carbon/epoxy laminates under thermal-mechanical loading, Proceedings of the 2016 4th International Conference on Machinery, Materials and Information Technology Applications, ACSR-Advances in Computer Science Research, Vol. 71, pp. 800-805, 2016 [p. 801].
78. Zhang M., Zuo C., Sun B., Gu B., Thermal ageing degradation mechanisms on compressive behavior of 3-D braided composites in experimental and numerical study, Composite Structures, Vol. 140, pp. 180–191, 2016 [p. 181].
79. 沙云东,贾秋月,骆丽,赵奉同,栾孝驰, 连续纤维增强金属基复合材料涡轮轴结构承扭特性分析,《航空动力学报》, 31卷, pp. 1377-1384, 2016 [p. 1379].
80. Gideon R.K., Zhou H.L., Wu X.Y., Sun B.Z., Gu B.H., Finite element analysis of 3D circular braided composites tube damage based on three unit cell models under axial compression loading, International Journal of Damage Mechanics, Vol. 25, No. 4, pp. 574-607, 2016 [p. 588].
81. Shokrieh M. M., Ghasemi R., Mosalmani R., Micromechanics based analytical model for prediction of the elastic properties of woven fabric composites, Modares Mechanical Engineering, Vol. 16, No. 7, pp. 1-11, 2016 [p. 4] (in Persian).
82. Barfuss D., Garthaus C., Gude M., Grützner R., Design of multi-scale-structured Al-CF/PA6 contour joints, Int. J. Automotive Composites, Vol. 2, No. 3/4, pp. 299–315, 2016 [p. 305].
83. Hafiychuk V., Modeling of microstructure for uncertainty assessment of carbon fiber reinforced polymer composites, 2016 IEEE Aerospace Conference, IEEE, pp. 1-9, 2016 [p. 3].
84. Zhang D., Chen L., Wang Y., Zhang L., Zhang Y., Yu K., Lu X., Sun J., Xiao X., Qian K., Stress field distribution of warp-reinforced 2.5D woven composites using an idealized meso-scale voxel-based model, J. Mater. Sci., Vol. 52, pp. 6814–6836, 2017 [p. 6821].
85. Shokrieh M.M., Ghasemi R., Mosalmani R., A general micromechanical model to predict elastic and strength properties of balanced plain weave fabric composites, J. Comp. Mater., Vol. 51, pp. 2863-2878, 2017 [p. 2877].
86. Zhang W., Gu B., Sun B., Thermal-mechanical coupling modeling of 3D braided composite under impact compression loading and high temperature field, Comp. Sci. Tech., Vol. 140, pp. 73-88, 2017 [p. 75].
87. Qiao T., Liu L., Li F., Lan X., Liu Y., Leng J., Strength property analysis for fiber-reinforced shape memory polymer composite laminate, Journal of Intelligent Material Systems and Structures, Vol. 28, pp. 1627–1639, 2017 [p. 1631].
88. Zhang M., Sun B., Gu B., Meso-structure ageing mechanism of 3-D braided composite’s compressive behaviors under accelerated thermo-oxidative ageing environment, Mechanics of Materials, Vol. 115, pp. 47–63, 2017 [p. 50].
89. Gao C.Y., Xiao J.Z., Zhang L.C., Ke Y.L., On the static and dynamic properties of fiber-reinforced polymer composites: A three-phase constitutive model, Journal of Thermoplastics Composite Materials, Vol. 30, pp. 1560–1577, 2017 [p. 1563].
90. Medikonda S., Tabiei A., Hamm R., A Comparative study on the Effect of Representative Volume Cell (RVC) Boundary Conditions on the Elastic Properties of a Micromechanics Based Unidirectional Composite Material Model, Int. J. Comp. Mater., 2017, Vol. 7, pp. 51-71, 2017 [p. 62].
91. Wang H., Cao M., Siddique A., Sun B., Gu B., Numerical analysis of thermal expansion behaviors and interfacial thermal stress of 3D braided composite materials, Computational Materials Science, Vol. 138, pp. 77-91, 2017 [p. 79].
92. Amann C., Kreiss S., Grass H., Meinhardt J., A review on process-induced distortions of carbon fiber reinforced thermosets for large-scale production, Prod. Eng. Res. Devel., Vol. 11, pp. 665–675, 2017 [p. 672].
93. Nerilli F., Vairo G., Progressive damage in composite bolted joints via a computational micromechanical approach, Composites Part B, Vol. 111, pp. 357-371, 2017 [p. 361].
94. Liu W., Chang X., Zhang X., Zhang Y., Progressive damage analysis of carbon/epoxy laminates under couple laser and mechanical loading, Results in Physics, Vol. 7, pp. 995-1005, 2017 [p. 997].
95. 雷贤卿, 杨科林, 马文锁, 孟琦, 网状增强相纤维棒几何建模及弹性性能研究,《中国胶粘剂》, 26卷, pp. 502-507, 2017 [p. 17].
96. Zhang D., Zheng X.T., Wu T.C., Prediction of Elastic Properties of 3D4d Braided Composite Based on Hybrid Model, Key Engineering Materials, Vol. 754, pp. 222-225, 2017 [p. 223].
97. Tao W., Liu Z., Zhu P., Zhu C., Chen W., Multi-scale design of three dimensional woven composite automobile fender using modified particle swarm optimization algorithm, Composite Structures, Vol. 181, pp. 73-83, 2017 [p. 75].
98. 陈滨琦, 曾建江, 王玉青, 童明波, 三向受压下单向复合材料层板破坏的细观力学分析, 《复合材料学报》, Vol. 34, No. 4, pp. 573-583, 2017 [p. 578].
99. 吴闻酉,刘柳,储筠霖,皮爱国, 基于改进桥联模型的CFRP层合结构抗冲击载荷动态力学性能研究, 《北京理工大学学报(自然科学版)》, Vol. 37(s2), pp. 5-9. 2017 [p. 6].
100.Amann C., Kreissl S., Grass H., Meinhardt J., A review on process‑induced distortions of carbon fiber reinforced thermosets for large‑scale production, Prod. Eng. Res. Devel., Vol. 11, pp. 665–675, 2017 [p. 672].
101.Tai J.H., Kaw A., Transverse shear modulus of unidirectional composites with voids estimated by the multiple-cells model, Composites Part A, Vol. 105, pp. 310–320, 2018 [p. 311].
102.Hao W.F, Liu Y., Huang X.R., Liu Y.H., Zhu J.G., A Unit-Cell Model for Predicting the Elastic Constants of 3D Four Directional Cylindrical Braided Composite Shafts, Appl Compos Mater., 25: 619–633, 2018 [p. 626].
103.Liu S., Shi B., Siddique A., Du Y., Sun B., Gu B., Numerical analyses on thermal stress distribution induced from impact compression in 3d carbon fiber/epoxy braided composite materials, Journal of Thermal Stresses, Vol. 41, pp. 903-919, 2018 [p. 906].
104.Zhao Z, Dang H, Zhang C, Yun G. J., Li Y., A multi-scale modeling framework for impact damage simulation of triaxially braided composites. Composites Part A, Vol. 110, pp. 113-125, 2018 [p. 115]
105.Wu W., Liu L., Chu Y., Pi A., Dynamic Mechanical Properties of Typical CFRP Laminate Under High-impact Compressive Loads, Int. J.. Multiphysics, Vol. 12, pp. 57-78, 2018 [p. 59].
106.Petrů M., Ondřej N., FEM Analysis of Mechanical and Structural Properties of Long Fiber-Reinforced Composites, in Finite Element Method-Simulation, Numerical Analysis and Solution Techniques, InTech, http://dx.doi.org/10.5772/intechopen.718812018, pp. 1-22, 2018 [p. 11].
107.Mohammadi B., Mahmoudi A., Developing a new model to predict the fatigue life of cross-ply laminates using coupled CDM-entropy generation approach, Theoretical and Applied Fracture Mechanics, Vol. 95, pp. 18-27, 2018 [p.22].
108.Ren C., Liu T., Siddique A., Sun B., Gu B., High-speed visualizing and mesoscale modeling for deformation and damage of 3D angle-interlock woven composites subjected to transverse impacts, Int. J. Mech. Sci., Vol. 140, pp. 119-132, 2018 [p. 124].
109.Heidari-Rarani M., Bashandeh-Khodaei-Naeini K., Mirkhalaf SM., Micromechanical modeling of the mechanical behavior of unidirectional composites – A comparative study, J. Reinf. Plastics & Comp., Vol. 37, No. 16, pp. 1051–1071, 2018 [1059].
110.Vignoli L. L., Savi M. M., Multiscale Failure Analysis of Cylindrical Composite Pressure Vessel: A Parametric Study, Latin Amer. J. Solids & Struct., Vol. 15, e63:1-20, 2018 [p. e63-5].
111.Ghasemi A. R., Fesharaki M. M., Effect of carbon nanotube on cured shape of cross-ply polymer matrix nanocomposite laminates: analytical and experimental study, Iranian Polymer J., Vol. 27, pp. 965–977, 2018 [p. 970].
112.Zhang M., Sun B., Gu B., Experimental and numerical analyses of matrix shrinkage and compressive behavior of 3-D braided composite under thermo-oxidative ageing conditions, Comp. Struct., Vol. 204, pp. 320-332, 2018 [p. 326].
113.Hu M., Zhang J., Sun B., Gu B.H., Finite element modeling of multiple transverse impact damage behaviors of 3-D braided composite beams at microstructure level, Int. J. Mech. Sci., Vol. 148, pp. 730-744, 2018 [p. 734].
114.刘亚平, 杨帆, 基于细观力学方法的底部充填封装芯片接合层的热应力计算,《力学季刊》, Vol. 39, No. 1, pp. 39-48, 2018 [p. 41].
115.Toh W., Tan L.B., Tse K.M., Giam A., Raju K., Lee H.P., Tan V.B.C., Material characterization of filament-wound composite pipes, Comp. Struct., Vol. 206, pp. 474-483, 2018 [p. 475].
116.Zhang D., Yu S., Feng G., Xiao X., Ma Q., Qian K., Numerical Identification of Meso Length-Effect and Full-Field Edge-Effect of 3D Braided Composites, Appl. Compos. Mater., Vol. 25, pp. 1133–1154, 2018 [p. 1137].
117.Mustafa G., Afzal Suleman A., Crawford C., Probabilistic first ply failure prediction of composite laminates using a multi-scale M-SaF and Bayesian inference approach, J. Compos. Mater., Vol. 52, No. 2, pp. 169-195, 2018 [p. 188].
118.Ouyang Y., Sun B.Z., Gu B., Finite element analyses on bending fatigue of three-dimesional five-directional braided composite T-beam with mixed unit-cell model, J. Compos. Mater., Vol. 52, No. 9, pp. 1139–1154, 2018 [p. 1146].
119.Tian Z., Yan Y., Ye J., Hong Y., Li X., An Analytical Constitutive Model for Progressive Damage Analysis of Three-Dimensional Braided Composites, Polymer Composites, Vol. 39, No. 11, pp. 4188-4204, 2018 [p. 4189].
120.Cao M., Wang H., Gu B., Sun B., Impact damage and compression behaviours of three-dimensional angle-interlock woven composites after thermo-oxidation degradation, J. Comp. Mater., Vol. 52, No. 15, pp. 2085–2101, 2018 [p. 2088].
121.欧阳屹伟, 王海楼, 顾伯洪, 孙宝忠, 三维五向编织复合材料T型梁弯曲疲劳应力分布, 《东华大学学报:自然科学版》, Vol. 44, No. 3, pp. 347-353, 2018 [p. 349].
122.Tian Z.Y., Yan Y., Li J., Hong Y., Guo F.L., Progressive damage and failure analysis of three-dimensional braided composites subjected to biaxial tension and compression, Composite Structures, Vol. 185, pp. 496-507, 2018 [p. 497].
123.Tian Z.Y., Yan Y., Hong Y., Guo F.L., Ye J.X., Li J., Improved genetic algorithm for optimization design of a three-dimensional braided composite joint, Composite Structures, Vol. 206, pp. 668-680, 2018 [p. 673].
124.Xing J., Zhao Z., He X., Zhang C., Li Y.L., Mesomechanical Simulation of Rate-Dependent Mechanical Behavior for Triaxially Braided Composites, Earth and Space, 2018 [p. 647].
125.Calvário M., Teixeira A.P., Soares C.G., Uncertainty propagation and sensitivity analysis of a laminated composite beam, in Progress in Maritime Technology and Engineering eds. By Soares G.C. & Santos T.A., CRC Press, pp. 395-402, 2018 [p. 397].
126.Mirdehghan A., Nosraty H., Shokrieh M. M., Ghasemi R., Akhbari M., Micromechanical odeling of the compression strength of three-dimensional integrated woven sandwich composites, J. Indus. Textiles, Vol. 48, No. 9, pp. 1399-1419, 2019 [p. 1407].
127.Guo F., Yan Y., Hong Y., Li X., Ye J., Theoretical Prediction for Thermal Expansion Coefficients of Unidirectional Fiber-Reinforced Composites with Variable Elliptical Cross-Sections, Polymer Composites, Vol. 40, No. 1, pp. 187-201, 2019 [p. 189].
128.Liu S., Zhang J., Shi B., Wang L., Gu B., Sun B., Damage and failure mechanism of 3D carbon fiber/epoxy braided composites after thermo-oxidative ageing under transverse impact compression, Comp. Part B, Vol. 161, pp. 677-690, 2019 [p. 680].
129.Cao M., Zhao Y., Gu B.H., Sun B.Z., Tay T.E., Progressive failure of inter-woven carbon-Dyneema fabric reinforced hybrid composites, Comp. Struct., Vol. 211, pp. 175-186, 2019 [p. 178].
130.Wang J., Wen L., Xiao J., Liang T., Hu X., Li P., The mechanical properties and constitutive model of two woven composites including the influences of temperature, strain rate and damage growth, Comp. Part B, Vol. 161, pp. 502-513, 2019 [p. 507].
131.Zhang N., Zhao Q., Mi Z., Wang Y., Gu B., Axial impact compressive behaviors of a novel 3-D integrated multilayer fabric reinforced composite tubular structures, Thin-Walled Structures, Vol. 134, pp. 363-372, 2019 [p. 365].
132.Yu S., Zhang D.T., Qian K., Numerical Analysis of Macro-Scale Mechanical Behaviors of 3D Orthogonal Woven Composites using a Voxel-Based Finite Element Model, Appl. Comp. Mater., Vol. 26, No. 1, pp. 65-83, 2019 [p. 69].
133.Hong Y., Yan Y., Guo F., Li X., Tian Z., Predicting the Elastic Properties of 3D N-Directional Braided Composite via a Theoretical Method, Mech. Comp. Mater., Vol. 55, No. 1, pp. 95-106, 2019 [p. 99].
134.Ghasemi A.R., Mohammadi‑Fesharaki M., Influence of different parameters on cured shapes and residual stresses of unsymmetric composite laminate reinforced by multi‑wall carbon nanotubes, Polymer Bulletin, 76:5751–5771, 2019 [p. 5759].
135.Ren C., Siddique A., Sun B., Gu B., Differences of transverse impact damages in 3D angle-interlock woven composites between warp and weft directions, International Journal of Damage Mechanics, 28(8): 1203-1227, 2019 [p. 1212].
136.He B., Mi Z.X., Wang Y.J., Gu B.H., Unit cell modeling on torsion damage behavior of a novel three-dimensional integrated multilayer fabric-reinforced composite tubular structure, Textile Research Journal, 89(19-20): 4253-4264, 2019 [p. 4258].
137.Li Y.Y., Pan Z.J ., Gu B.H., Sun B.Z., Numerical analysis of punch shear failure and stress characteristics of three-dimensional braided composite with different braiding angles, Int. J. Damage Mech., 28(9): 1418-1437, 2019 [p. 1422].
138.Zhao Z.Q., Liu P., Chen C.Y., Zhang C., Li Y.L., Modeling the transverse tensile and compressive failure behavior of triaxially braided composites, Comp. Sci.Tech., 172: 96-107, 2019 [p. 99].
139.Amir-Ahmadi S., Ghasemi A.R., Mohammadi M., Evaluation of thermal residual stresses of thin-walled laminated composite pipes to characterize the effects of mandrel materials and addition MWCNTs, Mech. Mater., 136: 103083-1–103083-9, 2019 [p. 103083-5].
140.Zhang S.F., Chen X., Stochastic Natural Frequency Analysis of Composite Structures Based on Micro-Scale and Meso-Scale Uncertainty, Appl. Sci.—BASEL, 9(13): 2603, 2019 [p. 2603-3]
141.Shi B.H., Liu S.K., Siddique A., Zhang J.J., Gu B.H., Sun B.Z., Comparisons on impact fracture behavior between three-dimensional four directional and five directional braided composite materials, Int. J. Damage Mech., 28(7): 990-1020, 2019 [p. 998].
142.刘鹏, 郭亚洲, 赵振强, 邢军, 张超, 二维三轴编织复合材料压缩失效行为的细观有限元模拟, 《航空学报》, 40(7): 222865, 2019 [p. 222865-5].
143.Yan S., Zhang J.J., Sun B.Z., Gu B.H., In situ measurement of strains at different locations in 3-D braided composites with FBG sensors, Comp. Struct., 230: 111527, 2019 [p. 111527-7].
144.Xing J., Du C., He X., Zhao Z., Zhang C., Li Y., Finite Element Study on the Impact Resistance of Laminated and Textile Composites, Polymers, 11: 1798, 2019 [p. 1798-4].
145.Guo F., Yan Y., Hong Y., Tian Z., Li J., Prediction and optimization design for thermal expansion coefficients of three-dimensional N-directional-braided composites, Polymer Composites, 40(6): 2495-2509, 2019 [P. 2497].
146.Du F., Alghamdi S., Riabbans B., Tan T., An experimental study on the fracture of a unidirectional carbon fiber-reinforced composite under quasistatic torsion, Comp. Part B., 172: 547-554, 2019 [p. 550 Fig. 3].
147.Vignoli L.L., Savi M.A., Pacheco P.M.C.L., Kalamkarov A.L., Comparative analysis of micromechanical models for the elastic composite laminae, Comp. Part B, 174: 106961, 2019 [p. 106961-5]
148.Chang X., Guo X., Ren M., Li T., Micromechanical matrix failure analysis for unidirectional fiber-reinforced composites, Thin-Walled Structures, 141: 275-282, 2019 [p. 279]
149.Hao WF, Huang Z, Zhang L, Zhao GQ, Luo Y, Study on the torsion behavior of 3-D braided composite shafts, Comp. Struct., Vol. 229, pp. 111384-1–111384-9, 2019 [p. 111384-5].
150.Hong Y., Yan Y., Guo F.L., Li J., Tian Z.Y., Experimental and numerical investigation on three-point bending behaviors of unidirectional warp-knitted composites, J. Appl. Poly. Sci., 136(42): 48132, 2019 [p. 48132-7].
151.Zeng H., Liu J.H., Xie Z.M., Sun H.Y., Modeling the shape memory and strength properties of fiber-reinforced shape memory polymer composite laminates, Smart Mater. & Struct., 28(10): 105011, 2019 [p. 105011-3].
152.Romanowicz M., Micromechanics-based prediction of the failure locus of angle-ply laminates subjected to biaxial loading, J. Comp. Mater., Vol. 53, No. 25, pp. 3577-3587, 2019 [p. 3585].
153.Gao X., Siddique A., Sun B., Gu B., Influence of Braiding Angle on Multiple Impact Damages of 3-D Braided Composite along Longitudinal Direction, Appl. Comp. Mater., Vol. 26, pp. 1261–1280, 2019 [p. 1264].
154.Gao X., Siddique A., Sun B., Gu B., Effect of braiding angle on dynamic mechanical properties of 3-D braided rectangular composites under multiple impact compressions, J. Comp. Mater., Vol. 53, No. 13, pp. 1827-1846, 2019 [p. 1832].
155.Dhari R.S., Patel N.P., Wang H.X., Hazell P.J., Progressive damage modeling and optimization of fibrous composites under ballistic impact loading, Mech. Adv. Mater. Struct., p. 1655688, 2019 [p.1655688-8].
156.Hernandez-Perez A., Fuentes-Gutierrez H., Lopez-Santos F., Ledesma-Orozco E.R., Aviles F., An assessment of micromechanical models to predict the elastic constants of unidirectional polymer composites, Mech. Adv. Mater. Struct., on line (DOI: 10.1080/15376494.2019.1645922), pp. 1-19, 2019 [p. 16].
157.Pan Z.X., Wu X.Y., Wu L.W., Temperature rise caused by adiabatic shear failure in 3D braided composite tube subjected to axial impact compression, J. Comp. Mater., Vol. 54, pp. 1305-1326, 2020 [p. 1311]
158.Mahmoudi A., Mohammadi B., Hosseini-Toudeshky H., Damage behaviour of laminated composites during fatigue loading, Fatigue and Fracture of Engineering Materials & Structures, Vol. 43, No. 4, pp. 698-710, 2020 [p. 700].
159.Shyamsunder L, Khaled B, Rajan SD, Goldberg RK, Carney, KS, DuBois P, Blankenhorn G, Implementing deformation, damage, and failure in an orthotropic plastic material model, J. Comp. Mater., 54(4): 463-484, 2020 [p. 464].
160.Seyedalikhani S., Shokrieh M.M., Shamaei-Kashani A.R., A novel dynamic constitutive micromechanical model to predict the strain rate dependent mechanical behavior of glass/epoxy laminated composites, Polyer Testing, 82: 106292, 2020 [p. 106292-4].
161.Liu S.K., Zhang J.J., Chen Z.T., Gu B.H., Sun B.Z., Modeling the coupling effects of braiding structure and thermo-oxidative aging on the high-speed impact responses of 3D braided composites, Thin-Walled Structures, 150: 106705, 2020 [p. 106705-3].
162.Zhao Y., Cao M., Tan H.X., Ridha M., Tay T.E., Hybrid woven carbon-Dyneema composites under drop- weight and steel ball impact, Comp. Struct., 236: 111811, 2020 [p. 111811-3]
163.Cao M., Gu B.H., Sun B.Z., Low-velocity impact and residual flexural behaviors of 2.5-D woven composite under accelerated thermal ageing: Experiment and numerical modeling, Int. J. Damage Mech., 29(3): 413- 434, 2020 [p. 417].
164.汪久根, 郭昊, 洪玉芳, 陈芳华, 自润滑关节轴承衬垫弹性参数的计算, 《纺织学报》, Vol. 41, No. 6, pp. 61-68, 2020 [p. 62]. Wang J.G., Guo H., Hong Y.F., Chen F.H., Elastic parameters calculation of liners of self-lubricating spherical plain bearings, Journal of Textile Research, Vol. 41, No. 6, pp. 61-68, 2020 [p. 62] (in Chinese).
165.Patel N.P., Sharma D.S., Dhari R.S., The Analytical Study of Stress Concentration Factor in an Infinite Plate at Various Temperatures,in Advances in Material Sciences & Engineering, Lecture Notes in Mechanical Engineering, M. Awang, S. S. Emamian & F. Yusof eds., pp. 353-362, 2020 [p. 355].
166.Vignoli L. L., Savi M. A., Pacheco P.M.C.L., Kalamkarov A.L., Micromechanical analysis of transversal strength of composite laminae, Comp. Struct., Vol. 250, p. 112546, 2020 [p. 112546-3].
167.Vignoli L.L., Savi M.A., Pacheco P.M.C.L., Kalamkarov A.L., Multiscale approach to predict strength of notched composite plates, Comp. Struct., Vol. 253, p. 112827, 2020 [p. 112827-6].
168.Li Y., Li W.G., Ma J.Z., Zheng S.F., Zhao Z.Y., Yang M.Q., Dong P., Chen L.M., Temperature dependent longitudinal tensile strength model of unidirectional fiber reinforced polymer composites considering the effect of matrix plasticity, Extreme Mechanics Letters, Vol. 40, p. 100963, 2020 [p. 100963-2].
169.Vignoli L.L., Savi M.A., Pacheco P.M.C.L., Kalamkarov A.L., Micromechanical analysis of longitudinal and shear strength of composite laminae, J. Comp. Mater., Vol. 54, No. 30, pp. 4853-4873, 2020 [p. 4857].
170.Dhari R.S., Patel N.P., The Response of Composite Laminates Subjected to Blast and Impact Loading at Various Temperatures, J. Dynamic Behavior Mater., Vol. 6, pp. 317-335, 2020 [p. 319].
171.Polyzos E., Katalagarianakis A., Polyzos D., Van Hemelrijck D., Pyl L., A multi-scale analytical methodology for the prediction of mechanical properties of 3D-printed materials with continuous fibres, Additive Manufacturing, Vol. 36, p. 101394, 2020 [p. 101394-6].
172.Wu L.W., Wang W., Jiang Q., Lin J.H., Tang Y.H., Illustrating hybrid effect and damage evolution of carbon/aramid braided composite under low –velocity impact, Composite Structures, Vol. 245, p. 112372, 2020 [p. 112372-3].
173.Wang K, Lu Y, Rao YN, Wei N, Ban J, Peng Y, Yao S, Ahzi S, New insights into the synergistic influence of voids and interphase characteristics on effective properties of unidirectional composites, Composite Structures, Vol. 255, p. 112862, 2021 [p. 112862-5].
174.Dhari RS, Patel NP, Wang HX, Hazell PJ, Numerical investigation of Fibonacci series based bio-inspired laminates under impact loading, Composite Structures, Vol. 255, p. 112985, 2021 [p. 112985-9].
175.Hang C, Cui H, Liu HF, Suo T, Micro/meso-scale damage analysis of a 2.5D woven composite including fiber undulation and in-situ effect, Composite Structures, Vol. 256, p. 113027, 2021 [p. 113027-2].
176.Rao YN, Ban J, Yao S, Wang K, Wei N, Lu Y, Ahzi S, A hierarchical prediction scheme for effective properties of fuzzy fiber reinforced composites with two-scale interphases: Based on three-phase bridging model, Mech. Mater., Vol. 152, p. 103653, 2021 [p. 103653-4].
177. Guedes RM, Validation of trace-based approach to elastic properties of multidirectional glass fibre reinforced composites, Composite Structures, Vol. 257, p. 113170, 2021 [p. 113170-5].
178. Liu W.L., Chen P.H., Theoretical analysis and experimental investigation of the occurrence of fiber bridging in unidirectional laminates under Mode I loading, Composite Structures, Vol. 257, p. 113383, 2021 [p. 113383-2].
179. Ke Y.A., Sun B.Z., Gu B.H., Zhang W., Damage initiation and propagation mechanisms of 3-D angle-interlock woven composites under thermo-oxidative aging, Composite Structures, Vol. 259, p. 113462, 2021 [p. 113462-4].
180. Liu T, Wu XY, Sun BZ, Fan W, Han WL, Yi HL, Investigations of defect effect on dynamic compressive failure of 3D circular braided composite tubes with numerical simulation method, Thin-Walled Structures, Vol. 160, p. 107381, 2021 [p. 107381-5].
181. Yin D.-M., Li B.M., Xiao H.-C., Prediction of three-dimensional elastic behavior of filament-wound composites based on the bridging model, Defence Technology, Vol. 17, No. 2, pp. 609-616, 2021 [p. 611].
182. Rumayshah K.K., Dirgantara T., Judawisastra H., Wicaksono S., Numerical micromechanics model of carbon fiber-reinforced composite using various periodical fiber arrangement, J. Mech. Sci. Tech., Vol. 35, No. 4, pp. 1401-1406, 2021 [p. 1405].
183. Shafiei E., Barbero E.J., Simulation and experimental validation of shear deformation and strength of textile-reinforced composites, Mech. Adv. Mater. Struct., 2021 (on line), p.1933277 [p. 1933277-2].
184. Hu M.Q., Sun B.Z., Gu B.H., Microstructure modeling multiple transverse impact damages of 3-D braided composite based on thermo-mechanical coupling approach, Comp. Part B, Vol. 214, 2021, p. 108741 [p. 108741-2].
185. Shafiei E, Kiasat M.S., Barbero E.J., Rate-dependent viscoplastic modeling and experimental validation of woven glass/epoxy composite materials, Comp. Part B, Vol. 216, 2021, p. 108741 [p. 108827-2].
186. Zhang J.J., Zhang W., Huang S.W., Gu B.H., An experimental-numerical study on 3D angle-interlock woven composite under transverse impact at subzero temperatures, Composite Structures, Vol. 268, 2021, p. 113916 [p. 113936-5].
187. Muyzemnek A.Yu., Ivanova T.N., Kartashova E.D., A Comparison of Experimental and Computation Results of Finding Effective Characteristics of Elastic Properties of Polymer Layered Composites from Carbon and Glass Fabrics, PNRPU Mechanics Bulletin, No. 2, 2021, pp. 88-105 [p. 93].
188. Gholami P., Kouchakzadeh M.A., Farsi M.A., A Continuum Damage Mechanics-based Piecewise Fatigue Damage Model for Fatigue Life Prediction of Fiber-reinforced Laminated Composites, Int. J. Engineering, Vol. 34, No. 6, pp. 1514-1525, 2021 [p. 1517].
189. Mirzaei A.H., Shokrieh M.M., Simulation and measurement of the self-heating phenomenon of carbon/ epoxy laminated composites under fatigue loading, Comp. Part B, Vol. 223, 2021, p. 109097 [p. 109097-5].
190. Gholami P., Farsi M.A., Kouchakzadeh M.A., Stochastic fatigue life prediction of Fiber-Reinforced laminated composites by continuum damage Mechanics-based damage plastic model, Int. J. Fatigue, Vol. 152, 2021, p. 106456 [p. 106456-4].
191. Du C.L., Wang H.F., Zhao Z.Q., Han L., Zhang C., A comparison study on the impact failure behavior of laminate and woven composites with consideration of strain rate effect and impact attitude, Thin-Walled Struct., Vol. 164, 2021, p. 107843 [p. 107843-6].
192. Guo J.H., Sun B.Z., Gu B.H., Zhang W., Failure behaviors of 3D braided composites with defects in different locations under low-velocity impact compression, Textile Research J. (on line), 2021, DOI 10.1177/00405175211030882[p. 6].
193. Sobhani E., Masoodi A.R., Natural frequency responses of hybrid polymer/carbon fiber/FG-GNP nanocomposites paraboloidal and hyperboloidal shells based on multiscale approaches, Aerospace Sci. & Tech., Vol. 119, 2021, p. 107111 [p. 107111-4].
194. Jiang H.Y., Ren Y.R., Jin Q.D., A novel synergistic multi-scale modeling framework to predict micro- and meso-scale damage behaviors of 2D triaxially braided composite, Int. J. Damage Mech. (on line), 2021, pp. 1-34 [p. 6].
195. 杨万庆,王艳超,李能文,徐希宇,叶国锐, 基于桥联模型参数反演的复合材料力学性能预测,《复合材料科学与工程》, 2期, pp. 84-88, 2021 [p. 85].
196. Chu Y., Sun L., Yang X., Wang J., Huang W., Multiscale simulation and theoretical prediction for the elastic properties of unidirectional fiber-reinforced polymer containing random void defects, Poly. Comp., 42: 2958–2972, 2021 [p. 2967].
197. Mirzaei A.H., Shokrieh M.M., Simulation and measurement of the self-heating phenomenon of carbon/epoxy laminated composites under fatigue loading, Comp. Part B., 223: 109097, 2021 [p. 109097-5].
198. Sobhani E., Moradi-Dastjerdi R., Behdinan K., Masoodi A.R., Ahmadi-Pari A.R., Multifunctional trace of various reinforcements on vibrations of three-phase nanocomposite combined hemispherical-cylindrical shells, Comp. Struct., 279: 114798, 2021 [p. 114798-4]
199. Shamaei-Kashani A., Shokrieh M.M., A strain-rate-dependent analytical model for composite bolted joints, Steel Comp. Struct., 41(2): 279-292, 2021 [p. 282].
200. Xun L.M., Wu Y.Y., Huang S.W., Sun B.Z., Gu B.H., Hu M.Q., Degradation of torsional behaviors of 3-D braided thin-walled tubes after atmospheric thermal ageing, Thin-Walled Structures, 170: 108555, 2022 [p. 108555-2].
201. Liu S.K., Wu X.Y., Liu S.Q., Sun B.Z., Gu B.H., Effect of thermo-oxidative ageing on the thermo-mechanical responses of 3D braided carbon fiber/epoxy composites during high-speed impact, J. Textile Institute (on line), 2021, DOI10.1080/00405000.2021.1999574. [p. 5]
202. Ke Y.A., Huang S.W., Guo J.H., Han C.F., Sun B.Z., Gu B.H., Effects of thermo-oxidative aging on 3-D deformation field and mechanical behaviors of 3-D angle-interlock woven composites, Comp. Struct., 281: 115116, 2022 [p. 115116-3]
203. Sattar S., Laredo B.B., Pedrazzoli D., Zhang M.F., Kravchenko S.G., Kravchenko O.G., Mechanical behavior of long discontinuous glass fiber nylon composite produced by in-situ polymerization, Composites A., 154: 106779, 2022 [p. 106779-6].
204. Feng P., Wu Y.W., Liu T.Q., Non-uniform fiber-resin distributions of pultruded GFRP profiles, Comp. Part B., 231: 109543, 2022 [p. 109543-6].
205. 张跃峰, 压电编织复合材料有限元分析, 硕士论文, 2005 [p. 33].
206. 陈磊, 复合材料结构宏、细观强度破坏分析, 硕士论文,南京航空航天大学, 2006 [p. 22].
207. Ryan S., Hypervelocity impact induced disturbances on composite sandwich panel spacecraft structures, PhD Thesis, RMIT University (澳大利亚), 2007 [p. 107].
208. Zand B., Modeling of composite laminates subjected to multiaxial loadings, PhD Thesis, The Ohio State University(美国), 2007 [p. 30].
209. Naik G. N., Development and Design Optimization of Laminated Composite Structures using Failure Mechanism Based Failure Criterion, PhD Thesis, Indian Institute of Science (印度), 2007 [p. 87].
210. Post N. L., Reliability based design methodology incorporating residual strength prediction of structural fiber reinforced polymer composites under stochastic variable amplitude fatigue loading, PhD Thesis, Virginia Polytechnic Institute and State University(美国), 2008 [p. 23].
211. 王秋美, 双轴向纬编针织结构热塑性复合材料拉伸性能研究, 博士论文, 东华大学, 2008 [p. 42].
212. Zabihpoor M., Progressive Flexural Fatigue Failure analysis of Composites through layer failure determination, PhD Thesis, Sharif university of Technology(伊朗), 2008 [p.53].
213. 潘志鹏, 钢筋混凝土等效材料的研究与应用, 硕士论文,哈尔滨工业大学, 2008 [p. 7].
214. 孙立, 缝合复合材料加筋结构压缩载荷作用下的力学响应研究, 硕士论文,南京航空航天大学, 2008 [p. 22].
215. 龚瑜, 细观损伤力学在复合材料特性统计模拟仿真研究中的应用, 硕士论文, 浙江大学, 2010 [p. 34].
216. 王欣荣, 考虑工艺因素的复合材料缠绕压力容器的承载能力分析, 硕士论文, 大连理工大学, 2011 [p. 16].
217. Balea L., Comportement des matériaux composites à renforts odelin élaborés par injection de résine, Doctorat These(博士论文), Universite de Toulouse (法国图卢兹大学), 2011 [p. 40].
218. Thompson L.F., Through-Thickness Compression Testing and Theory of Carbon Fibre Composite Materials, PhD Thesis, the University of Manchester (英国), 2011 [p. 77].
219. 赵琳,基于单胞解析模型与渐进损伤分析的复合材料强度预报, 博士论文, 哈尔滨工业大学, 2012 [p. 44].
220. 靳丽莹, 4D轴编C/C复合材料刚度及强度性能研究, 硕士论文, 哈尔滨工业大学, 2012 [p. 12].
221. Zhang C., Multi-scale characterization and failure modeling of carbon/epoxy triaxially braided composite, PhD Thesis, The University of Akron(美国), 2013 [p. 51].
222. Qian C., Multi-scale odeling of fatigue of wind turbine rotor blade composites, Master Thesis, DelftTechnische Universiteit(荷兰), 2013 [p. 31].
223. 唐占文, 考虑界面相的复合材料宏—细观渐进损伤解析模型研究, 博士论文, 哈尔滨工业大学, 2013 [p. 11].
224. Mudric T., Impact Behaviour of Multifunctional Panels: Experiments and Simulations, PhD Thesis, Università degli Studi di Padova(意大利帕多瓦大学), 2014 [p. 104].
225. 吴利伟, 四步法三维编织复合材料弯曲疲劳性质及损伤演化有限元分析, 博士论文, 东华大学, 2014 [p. 30].
226. 谭巧,形状记忆环氧聚合物及其复合材料的典型力学行为研究,博士论文,哈尔滨工业大学, 2015 [p. 69]
227. 胥小强,纤维增强复合材料层合板振动响应分析与优化, 硕士论文, 南京航空航天大学, 2015 [p. 10]
228. Mustafa G. High fidelity micromechanics-based statistical analysis of composite material properties, PhD Thesis, University of Victoria(巴基斯坦), 2016 [p. 70].
229. 郭晓岗,形状记忆聚合物及其复合材料的力学行为研究, 博士论文, 哈尔滨工程大学, 2016 [p. 97]
230. 刘柳, 抗高冲击载荷CFRP层合结构力学性能研究, 硕士论文,北京理工大学, 2016 [p. 16]
231. 张典堂, 三维五向编织复合材料全场力学响应特性及细观损伤分析, 博士论文, 天津工业大学, 2016 [p. 59]
232. Tai J.-H., Effect of Void Fraction on Transverse Shear Modulus of Advanced Unidirectional Composites, MS Thesis, University of South Florida (美国), 2016 [p. 12].
233. 敬凌霄, 多轴向经编聚酯织物增强膜材力学性能研究, 博士论文, 东华大学, 2016 [p. 27].
234. 刘林林, CNG-2型气瓶缠绕层应力损伤机理研究, 硕士论文, 浙江理工大学, 2016 [p. 16].
235. 邵明正, 层联机织复合材料细观结构建模与仿真, 硕士论文, 天津工业大学, 2017 [p. 26].
236. 杨科林, 网状增强相纤维棒力学性能及制备工艺研究, 硕士论文, 河南科技大学, 2017 [p. 18].
237. 柳见化, 纤维增强形状记忆聚合物复合材料强度性能研究, 硕士论文, 南京航空航天大学, 2017 [p. 13]
238. 王海楼, 三维编织碳纤维/环氧树脂复合材料压缩性质的温度效应和热力耦合机制, 博士论文, 东华大学, 2017 [p. 68].
239. 李冰珂, 三维编织复合材料横向冲击变形和损伤细观结构机理, 硕士论文, 东华大学, 2018 [p. 33]
240. 于姣, 三维编织复合材料冲击加载破坏裂纹演化过程, 硕士论文, 东华大学, 2018 [p. 24].
241. 张松俊, 基于多尺度模型的二维三轴编织复合材料的损伤破坏机理研究, 硕士论文, 湖南大学, 2018 [p. 9].
242. 欧阳屹伟, 三维五向编织复合材料T型梁弯曲疲劳多尺度结构破坏机理, 博士论文, 东华大学, 2018 [p. 40].
243. 张威, 三维编织复合材料T型梁高温场横向冲击热力耦合响应与损伤分析, 博士论文, 东华大学, 2018 [p. 53].
244. Monsås A.B., Long-Term Properties of Interlaminar Shear Strength of Composite Laminates, MS Thesis, Norwegian University of Science and Technology (挪威), 2018 [p. 5].
245. 张曼, 三维编织复合材料热氧老化效应及压缩性质降解机理, 博士论文, 东华大学, 2018 [p. 44].
246. 肖建章, 碳纤维复合材料切削加工力学建模与工艺参数优化研究, 博士论文, 浙江大学, 2018 [p. 30].
B. List of peer reviewed publications by researchers other than the author applying the matrix true stress theory/stress concentration factor of matrix to dealing with mechanics of composite problems
(Note: The number within the brackets at the end of each publication indicates a page number of the publication on which the true stress theory’s formulae were cited, or the true stress theory was mentioned to have been used, or a data table or figure was shown containing the true stress theory’s solutions)
1. Hafiychuk V., Modeling of Microstructure for Uncertainty Assessment of Carbon Fiber Reinforced Polymer Composites, Proceedings of 2016 IEEE Aerospace Conference, DOI:10.1109/AERO.2016.7500807, Big Sky, MT, USA, pp. 1-9, 2016 [p. 3].
2. Xin Haohui, Liu Yuqing, Mosallam A., He Jun, Du Ao, Evaluation on material behaviors of pultruded glass fiber reinforced polymer (GFRP) laminates, Composite Structures, 182: 283-300, 2017 [p. 286].
3. Zhu Xiaojun, Chen Xuefeng, Zhai Zhi, Yang Zhibo, Chen Qiang, The effects of thermal residual stresses and interfacial properties on the transverse behaviors of fiber composites with different microstructures, Sci Eng Compos Mater, 24(1): 41–51, 2017 [p. 44]
4. Toh W., Tan L.B., Tse K.M., Giam A., Raju K., Lee H.P., Tan V.B.C., Material characterization of filament-wound composite pipes, Composite Structures, Vol. 206, pp. 474-483, 2018 [p. 476].
5. Vignoli L.L., Savi M.A., Multiscale Failure Analysis of Cylindrical Composite Pressure Vessel: A Parametric Study, Latin American Journal of Solids and Structures, Vol. 15, e63, 2018 [p. e63-5].
6. Xin H., Mosallam A.S., Liu Y., Veljkovic M., He J., Mechanical characterization of a unidirectional pultruded composite lamina using micromechanics and numerical homogenization, Construction and Building Materials, Vol. 216, pp. 101-118, 2019 [p. 115].
7. Ren M.-F., Zhang X.-W., Huang C., Wang B., Li T., An integrated macro/micro-scale approach for in situ evaluation of matrix cracking in the polymer matrix of cryogenic composite tanks, Composite Structures, Vol. 216, pp. 201-212, 2019 [p. 206].
8. 杜志鸿, 倪新华, 刘协权, 于金凤, 吴永胜, 纳观界面应力集中对复合晶粒断裂应力的影响, 《哈尔滨工业大学学报》, Vol. 51, No. 5, pp. 118-124, 2019 [p. 122].
9. Vignoli L.L., Savi M.A., Pacheco P.M.C.L., Kalamkarov A.L., Micromechanical analysis of transversal strength of composite laminae, Composite Structures, Vol. 250, p. 112546, 2020 [p. 112546-3].
10. Vignoli L.L., Savi M.A., Pacheco P.M.C.L., Kalamkarov A.L., Multiscale approach to predict strength of notched composite plates,Composite Structures, Vol. 253, p. 112827, 2020 [p. 112827-15].
11. Vignoli L.L., Savi M.A., Pacheco P.M.C.L., Kalamkarov A.L., Micromechanical analysis of longitudinal and shear strength of composite laminae, Journal of Composite Materials, pp. 1–17, http://dx.doi.org/10.1177/00219983209363432020 [p. 5].
12. Jiang H.Y., Ren Y.R., Jin Q.D., A novel synergistic multi-scale modeling framework to predict micro- and meso-scale damage behaviors of 2D triaxially braided composite, Int. J. Damage Mech., pp. 1-34, 2021, DOI: 10.1177/ 10567895211033974. [p. 9].
13. Liu W.L., Chen P.H., Theoretical analysis and experimental investigation of the occurrence of fiber bridging in unidirectional laminates under Mode I loading, Composite Structures, Vol. 257, p. 113383, 2021 [p. 113383-2].
14. Sun Y., Liu Y., Wang C., Zuo Y., Xin H., Web buckling mechanism of pultruded GFRP bridge deck profiles subjected to concentrated load, Structures, 34: 3789- 3805, 2021 [p. 3792].
Projects
1. Investigation on Several Fundamental Problems in Development of Bridging Model, A Special Project by the National Natural Science Foundation of China with Grant number 1832014, Budget: 3.1 Million RMBs, from Jan. 2019 to Dec. 2023, Principal Investigator.
2. Investigation on Bridging Model Theory with Non-ideal Interface and Stress Concentration Factor of the Matrix under a Transverse Compression, A General Program by the National Natural Science Foundation of China with Grant number 11472192, Budget: 1.1 Million RMBs, from Jan. 2015 to Dec. 2018, Principal Investigator.
3. Investigation on In-situ Strengths of the Matrix in a Composite, A General Program by the National Natural Science Foundation of China with Grant number 11272238, Budget: 0.92 Million RMBs, from Jan. 2015 to Dec. 2018, Principal Investigator.
4. Investigation on the Influence of Interface on In-situ Strengths of the Matrix, A Research Fund for the Doctoral Program by the Ministry of Education of China (for Supervisors) with Grant number 20120072110036, Budget: 0.12 Million RMBs, from Jan. 2013 to Dec. 2015, Principal Investigator.
5. Design and Fabrication of Organic Glasses Reinforced with Nanofibers, A General Program by the National Natural Science Foundation of China with Grant number 50773054, Budget: 0.32 Million RMBs, from Jan. 2008 to Dec. 2010, Principal Investigator.
6. Design and Fabrication of a Big Wind Turbine Blade formed in One Piece, A Special Topic by the National High Technology Development Program (“863” Program) of China with Grant number 2006AA03Z555, Budget: 0.76 Million RMBs, from Dec. 2006 to Dec. 2008, Principal Investigator.
7. Investigation on Low-cost Fabrication Technology for Wind Turbine Blade, A Research Fund by Shanghai Pujiang Program with Grant number 05PJ14093, Budget: 0.2 Million RMBs, from Dec. 2005 to Sept. 2007, Principal Investigator.
8. Investigation on the Load Sustaining Ability of Fiber Reinforced Composite Structures Subjected to a Transverse Impact, A Research Fund for the Doctoral Program by the Ministry of Education of China with Grant number 20040247008, Budget: 0.06 Million RMBs, from Jan. 2005 to Dec. 2008, Principal Investigator.
9. Investigation on the Fabrication of Continuously Coaxial Compound Nanofibers, A Research Fund by the Special Nanotechnology Program of Shanghai’s Committee of Science and Technology with Grant number 0352nm091, Budget: 0.3 Million RMBs, from Jan. 2004 to Dec. 2005, Principal Investigator.
Awards
1. Bridging Model, the second prize of the First Science and Technology Award in 2019 by the Chinese Society for Composite Materials.
2. Micromechanically Elasto-Plastic Constitutive Relation of Continuous Fiber Reinforced Composites, the second prize of the Natural Science Award in 2020 by the Chinese Society of Theoretical & Applied Mechanics.