黄争鸣

教授

电子邮箱:huangzm@tongji.edu.cn

电话:021-65985373

教育经历

  • 1976/12—1979/12,西北电讯工程学院,无线电结构设备与工艺专业,大学

  • 1980/9—1983/3,华中工学院,固体力学学专业,硕士/Master Degree

  • 1996/1—1999/8,新加坡国立大学,材料工程专业,博士/Ph.D.

工作经历

  • 1979/12—1980/8,0六四基地301研究所,技术科,技术员

  • 1983/4—1995/12,华中工学院/华中科技大学,力学系,助教、讲师、副教授

  • 1998/1—1999/7,新加坡国立大学,聚合物实验室,研究工程师

  • 1997/8—2002/4,新加坡国立大学,聚合物实验室,研究员

  • 2002/5-2007/4,同济大学,工程力学系/航空航天与力学学院,长江学者特聘教授

  • 2007/5—迄今,同济大学,航空航天与力学学院,教授

主要研究方向

1.复合材料力学

固体力学研究材料本构、变形、破坏和强度,材料分各向同性与各向异性。各向同性材料力学理论已基本完善,各向异性暨复合材料的力学理论,除连续纤维增强复合材料的线弹性理论外,皆未成熟。根本原因是,现有理论只能得到复合材料均值应力。连续介质力学,将材料中一点应力,定义为无穷小单元体应力的平均值,复合材料单元体不能无穷小,因其中须同时含纤维和基体,其应力“天生”是平均值或近似值。复合材料性能必须基于真实应力计算,弹性性能亦如此,只因均值应力和真实应力皆处弹性阶段,两者所得结果相同,造成了复合材料弹性性能与真实应力无关的假象。黄争鸣的系统性、开创性贡献包括:

1)创建了任意连续纤维、短纤维及颗粒增强复合材料的统一弹-塑性解析本构理论—桥联模型(Bridging Model),见代表性论著1、2、10、13。力学自阿基米德时代迄今已发展几千年,但由国人创建并被他人大量应用(他人据此公开发表研究论文过百篇)的理论凤毛麟角,固体力学前辈只有胡海昌先生的变分原理被他人应用过百,桥联模型被他人应用已超240篇(列表见后)。

2)首创(从0到1)并系统建立了基体真实应力理论,见代表性论著1、2、11、12。黄争鸣发现,纤维真实应力与其均值应力相同,基体真实应力由其均值应力与应力集中系数相乘得到,该系数不可按经典定义,而是由线平均应力除以体平均应力确定。该理论已被国内外他用10余篇(列表见后)。

3)发现了分析层合板分层的新方法,见代表性论著5,彻底消除了现有理论中两大不足:10、部分输入数据无标准可循,实验结果不可信,只能试凑;20、几乎每个加载步都须迭代,计算量庞大。

4)基于物理原理创建了检测各种基体破坏的强度判据,见代表性论著1、2、3、4。

5)在桥联模型和基体真实应力基础上,解决了一系列困扰业界的难题,见代表性论著1、2、6、8、9,如:任意载荷下纤维和基体界面何时开裂?为啥先进复合材料轴向与横向拉伸直到破坏皆线性,但剪切非线性变形却能超过纯基体的弹塑性变形?为啥如T300到T1100碳纤维的强度大幅提升,但复合材料的轴向压缩强度却能保持不变?...

6)从理论和实验对比揭示了复合材料代表性单元中纤维越少越好,见代表性论著7,否定了目前热门多尺度模拟研究中的“代表性单元应足够大”一说。

2.静电纺丝

静电纺丝被认为是唯一可制备连续纳米/亚微米纤维的技术,但此前只能纺出单一材料实心超细纤维,黄争鸣是芯-壳双材料复合纳米纤维纺丝技术的发明人之一,见代表性论著14、15、16。

3.其他

建立了任意非线性算子方程解存在性(Hilbert第20个问题)的一个充分必要条件,见代表性论著17。

发明了“理想叶根连接与梯形块根段结构”技术,见代表性论著18,可将目前风机叶片材料消耗同等(材料类型不变、叶片外形不变)降低10%,见代表性论著18。

发表期刊论文215篇、学术专著4本、主编1本、合著章节9章、授权发明专利12项,其中一篇论文(代表性论著15)SCI他引超5900次。

主讲课程

  • 复合材料力学

代表性论著

1. 黄争鸣*,复合材料破坏与强度,科学出版社,北京,2018.

2. Huang Z.-M.*, Constitutive relation, deformation, failure and strength of composites reinforced with continuous/short fibers or particles, Composite. Structures., 262: 113279, 2021.

3. Wang L.-S., Huang Z.-M.*, On strength prediction of laminated composites, Composites Science and Technology, 2021 (on line). https://doi.org/10.1016/j.compscitech.2021.109206.

4. Huang Z.-M.*, Wang L.-S., Jiang F., Xue Y. D., Detection on matrix induced composite failures, Composites Science and Technology, 205: 108670, 2021.

5. Huang Z.-M.*, Li P., Prediction of laminate delamination with no iteration, Engineering Fracture Mechanics, Vol. 238, p. 107248, 2020.

6. Zhou Y, Huang Z.-M.*, Shear deformation of a composite until failure with a debonded interface, Comp. Struct., 254: 112797, 2020.

7. Huang Z.-M.*, On micromechanics approach to stiffness and strength of unidirectional composites, Journal of Reinforced Plastics and Composites, 38: 167–196, 2019.

8. Zhou Y., Huang Z.-M.*, Failure of fiber-reinforced composite laminates under longitudinal compression, Journal of Composite Materials, 53(24): 3395–3411, 2019.

9. Zhou Y., Huang Z.-M.*, Liu L., Prediction of interfacial debonding in fiber-reinforced composite laminates, Polymer Composites, 40(5): 1828-1841, 2019.

10. Huang Z.-M.*, Zhang C.C., Xue Y.D., Stiffness prediction of short fiber reinforced composites, International Journal of Mechanical Sciences, 161-162: 105068, 2019.

11. Huang Z.-M.*, Xin L.-M., In situ strengths of matrix in a composite, Acta Mechanica Sinica, 33: 120–131, 2017.

12. Huang Z.-M.*, Liu L., Predicting strength of fibrous laminates under triaxial loads only upon independently measured constituent properties, International Journal of Mechanical Sciences, 79: 105–129, 2014.

13. Huang Z.-M.*, Simulation of the mechanical properties of fibrous composites by the Bridging micromechanics Model, Composites Part A, 32(2): 143-172, 2001.

14. Zhang Y.Z.*, Huang Z.-M.*, Xu XJ, Lim CT, Ramakrishna S, Preparation of core-shell tructured PCL-r-gelatin bi-component nanofibers by coaxial electrospinning, Chemistry of Materials, 16(18): 3406-3409, 2004.

15. Huang Z.-M.*, Zhang YZ, Kotaki M, Ramakrishna S, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Science and Technology, 63: 2223–2253, 2003.

16. 黄争鸣、张彦中,共轴复合连续纳/微米纤维及其制备方法,中国发明专利授权专利号:ZL 200310108130.9, 2003.

17. Huang Z.-M.*, A necessary and sufficient condition for the existence of a solution to an operator equation, Nonlinear Analysis, Theory, Methods & Applications, 13(7): 829-832, 1989.

18. 黄争鸣,风力机叶片结构及其加工成型方法和用途,中国发明专利授权专利号:ZL200910197175.5, 2009.

他用论文列表

他人应用桥联模型(Bridging Model)公开发表的研究文献列表

(注:1201是应用桥联模型解决科学问题的期刊论文列表,202243则是应用桥联模型完成的硕士/博士论文列表,这些文献尾部方括号内的数字表示该文献中出现桥联模型公式、明示采用桥联模型、文内图或表中数据基于桥联模型计算所得的页码)

1. Luccioni B.M., Oller S., MODELO PARA COMPUESTOS REFORZADOS CON FIBRAS, Mecnica Computacional, Vol. 22, pp. 2049-2063, 2003 [p. 2060].

2. Soden P.D., Kaddour A.S., Hinton M.J., Recommendations for designers and researchers resulting from the world-wide failure exercise, Comp. Sci. Tech., Vol. 64, No. 3-4, pp. 589-604, 2004 [p. 593].

3. Kaddour AS, Hinton MJ, Soden PD. A comparison of the predictive capabilities of current failure theories for composite laminates: additional contributions, Comp. Sci. Tech., Vol. 64, No. 3-4, pp. 449-476, 2004 [p. 451]

4. Hinton M.J., Kaddour A.S., Soden P.D., A further assessment of the predictive capabilities of current failure theories for composite laminates: comparison with experimental evidence, Comp. Sci. Tech., Vol. 64, No. 3-4, pp. 549-588, 2004 [p. 552].

5. Pochiraju K., Jovanovic V., Modeling Material Property Heterogeneity in Fiber Reinforced Injection Molded Plastic Parts, Polymer Composites, 26: 98-113, 2005 [p.106].

6. Zabihpoor M., Adibnazari S. and Abedian A., Evaluation and development of bridging micromechanical model using mechanical properties of composite materials characterization tests, Iranian Journal of Polymer Science and Technology (Persian), Vol. 18(6), pp. 369-376, 2005 [p.370].

7. Zhou R., Hu H., Chen N., Feng X., An Experimental and Numerical Study on the Impact Energy Absorption Characteristics of the Multiaxial Warp Knitted (MWK) Reinforced Composites, J. Comp. Mater., Vol. 39, No. 6, pp. 525-542, 2005 [p. 534].

8. 吕毅,吕国志,吕胜利, 细观力学方法预测单向复合材料的宏观弹性模量,《西北工业大学学报》, 24卷, pp. 787-790, 2006 [p.788].

9. Chun H.J., Kim H.W., Byun J.H., Effects of through-the-thickness stitches on the elastic behavior of multi-axial warp knit fabric composites, Composite Structures, Vol. 74, pp. 484 -494, 2006 [p. 486].

10. 李晨,许希武, 缝合复合材料层板三维纤维弯曲模型及压缩强度预报,《复合材料学报》, 23卷, pp. 179-185, 2006 [p. 183].

11. 李晨,许希武, 缝合复合材料层板抗拉强度的预测,《机械工程材料》, 30卷, pp. 10-12, 2006 [p. 12].

12. Chun H.-J., Kim H.-W., Byun J. H., Elastic Behaviors of Stitched Multi-axial Warp Knit Fabric Composites, Key Engineering Materials, Vols. 306-308, pp 817-822, 2006 [p. 819].

13. Luccioni B.M., Constitutive Model for Fiber-Reinforced Composite Laminates, J. Appl. Mech. ASME, Vol. 73, pp. 901-910, 2006 [p. 905].

14. Zabihpoor M. and Adibnazari S., Simulation of fiber/matrix debonding in unidirectional composites under fatigue loading, Journal of Reinforced Plastics and Composites, Vol. 26, pp. 743-760, 2007 [p. 747].

15. Zabihpoor M., Adibnazari S., A micromechanics approach for fatigue of unidirectional fibrous composites, Iranian Polymer Journal, Vol. 16, pp. 219-232, 2007 [p. 222].

16. 徐焜, 许希武, 田静, 小编织角三维编织复合材料拉伸强度模型,《航空学报》, 28卷, pp. 294-300, 2007 [p. 296].

17. Kumar P., Chandra R., Singh S.P., Interphase Effect on Damping in Fiber Reinforced Composites, ICCES, Vol. 4, pp. 67-72, 2007 [p. 68].

18. González A., Graciani E., París F., Prediction of in-plane stiffness properties of non-crimp fabric laminates by means of 3D finite element analysis, Composites Science and Technology, Vol. 68, pp. 121-131, 2008 [p. 126].

19. Li D., Lu Z., Lu W., Theoretical prediction of stiffness and strength of three-dimensional and four-directional braided composites, Applied Mathematics and Mechanics, Vol. 29, pp. 163-170, 2008 [p. 165].

20. 李典森, 卢子兴, 卢文书, 三维四向编织复合材料刚度和强度的理论预测,《应用数学和力学》, 29卷, pp. 149-156, 2008 [p. 151].

21. 熊璇, 吕国志, 吕毅, 细观力学法预测单向复合材料的有效热膨胀系数,《强度与环境》, 35卷, pp. 24-30, 2008 [p. 26].

22. Ryan S., Wicklein M., Mouritz A., Riedel W., Schafer F., Thoma K., Theoretical prediction of dynamic composite material properties for hypervelocity impact simulations, International Journal of Impact Engineering, Vol. 36, pp. 899-912, 2009 [p. 901].

23. Li D., Lu Z., Chen L., Li J.L., Microstructure and mechanical properties of three-dimensional five-directional braided composites, International Journal of Solids and Structures, Vol. 46, pp. 3422-3432, 2009 [p. 3427].

24. 魏丽梅, 李典森, 基于桥联模型预报三维五向编织复合材料的刚度和强度,《产业用纺织品》, 27卷, pp. 21-25, 2009 [p. 22].

25. Shaw A., Sriramula S., Gosling P.D., Chryssanthopoulos M.K., A critical reliability evaluation of fibre reinforced composite materials based on probabilistic micro and macro-mechanical analysis, Composites Part B, Vol. 41, pp. 446-453, 2010 [p. 448].

26. 常新龙, 李正亮, 胡宽, 孙涛, 应用桥联模型预测复合材料吸湿老化剩余强度, 《复合材料学报》, 27卷, pp. 208-212, 2010 [p. 209].

27. 马元春, 韩海涛, 卢子兴, 卢文书, 邱涛. 缝纫泡沫夹芯复合材料失效强度的理论预测与试验验证,《复合材料学报》, 27卷, pp. 108-115, 2010 [p. 111].

28. Kumar P., Chandra R., Singh S.P., Interphase effect on fiber-reinforced polymer composites, Composite Interfaces, Vol. 17, pp. 15-35, 2010 [p. 17].

29. Zhang Y.X., Zhang H.S., Multiscale finite element modeling of failure process of composite laminates, Composite Structures, Vol. 92, pp. 2159-2165, 2010 [p. 2160].

30. Jin L., Hu H., Sun B., Gu B., A simplified microstructure model of bi-axial warp-knitted composite for ballistic impact simulation, Comp. Part B, Vol. 41, pp. 337–353, 2010 [p. 342].

31. Ma Y.C., Han H.T., Lu Z.X., Lu W.S., Qiu T., Guo J.H., Theoretical prediction of the stiffness and failure strength of stitched foam-core sandwich composites, Polymers & Polymer Composites, Vol. 19, pp. 303-311, 2011 [p. 306].

32. Kumar P., Chandra R., Singh S.P., Measurement of damping of fiber reinforced composite material, Journal of Materials Science and Engineering B, Vol. 1, pp. 555-564, 2011 [p. 557].

33. 常新龙, 李正亮, 陈特熙, 方鹏亚. 激光-机械载荷联合作用下复合材料层合板的破坏规律分析,《红外与激光工程》, 40卷, pp. 1935-1939, 2011 [p. 1936].

34. Nehme S., Hallal A., Fardoun F., Younes R., Hagege B., Aboura Z., Benzeggagh M., Chehade F.H., Numerical/analytical methods to evaluate the mechanical behavior of interlock composites, Journal of Composite Materials, Vol. 45, pp. 1699-1716, 2011 [p. 1716].

35. 唐敏, 高波, 杨月城, 史宏斌, 基于均匀化方法的轴编C/C复合材料性能预测,《固体火箭技术》, Vol. 34, No. 1, pp. 109-118, 2011 [p. 111](三向压缩).

36. 王春敏, 针织复合材料力学性能的研究, 《材料导报》, Vol. 25, No. 18, pp. 277-280, 2011 [p. 280]

37. 覃海英, 刘晓红. 铺设方法对风机叶片复合材料力学性能的影响, 《装备制造技术》, No. 5, pp. 13-15, 2011 [p. 8]

38. Younes R., Hallal A., Fardoun F., Chehade F.H., Comparative review study on elastic properties modeling for unidirectional composite materials, in: Composites and Their Properties, Hu N. ed, InTech, Chapter 17, http://dx.doi.org/10.5772/50362, pp. 391-408, 2012 [p. 396].

39. Shokrieh M.M., Mazloomi M.S., A new analytical model for calculation of stiffness of three-dimensional four-directional braided composites, Composite Structures, Vol. 94, pp. 1005-1015, 2012 [p. 1011].

40. Shokrieh M.M., Nasir V., Karimipour H., A micromechanical study on longitudinal strength of fibrous composites exposed to acidic environment, Materials & Design, Vol. 35, pp. 394- 403, 2012 [p. 395].

41. Bhalchandra S.A., Shiradhonkar Y.S., Determination of properties of transversely isotropic lamina using micromechanics approach, Elixir Cement & Con. Com., Vol. 48, pp. 9588-9593, 2012 [p. 9591].

42. Liu L., Zhou Y., Pan S., Experimental and analysis of the mechanical behaviors of multi- walled nanotubes/polyurethane nanoweb reinforced epoxy composites, Journal of Reinforced Plastics and Composites, Vol. 32, pp. 823-834, 2013 [p. 830].

43. 周宏伟,易海洋,薛东杰,段志强,张春花, Mishnaevsky J.L., 纤维方位角对玻纤复合材料破坏机理的影响研究,《中国科学: 物理学\力学\天文学》, 43卷, pp. 167-176, 2013 [p. 169].

44. Guo Q., Zhang G., Li J., Process parameters design of a three-dimensional and five-directional braided composite joint based on finite element analysis, Materials & Design, Vol. 46, pp. 291-300, 2013 [p. 294].

45. 李剑峰, 燕瑛, 复合材料热膨胀性能的细观分析模型与预报, 《北京航空航天大学学报》, 39卷, pp. 1069-1073+1085, 2013 [p. 1070].

46. Guedes R.M., Xavier J., Understanding and predicting stiffness in advanced fibre-reinforced polymer (FRP) composites for structural applications, in: Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications Ed. by J. Bai, Woodhead Publishing Ltd., Chapter 11, pp. 298-360, 2013 [p. 322].

47. Ding J., Liu J., Li C., Yi H., Failure Mechanism of Layered Salt Rock in Three-point Bending Test, Applied Mechanics and Materials, Vol. 256-259, pp. 48-56, 2013 [p. 51].

48. Kaddour A.S., Hinton M.J., Maturity of 3D failure criteria for fibre reinforced composites: Comparison between theories and experiments: Part B of WWFE-II, J. Comp. Mater., Vol. 47, No. 6-7, pp. 925-966, 2013 [p. 929].

49. 汤超, 乔玉炜, PMI 泡沫夹层结构的材料非线性分析,《玻璃钢/复合材料》, 1期, pp. 14-19, 2013 [p. 16](三向压缩)

50. Marino M., Francesca Nerilli, Vairo G., A finite-element approach for the analysis of pin-bearing failure of composite laminates, Frattura ed Integrità Strutturale, Vol. 29, pp. 241-250, 2014 [p. 242].

51. 刘万雷, 常新龙, 张晓军, 胡宽, 纤维增强复合材料宏观性能预测与可靠度分析, 《玻璃钢/复合材料》, 10期, pp. 42-47, 2014 [p. 43].

52. Wu L., Gu B., Fatigue behaviors of four-step three-dimensional braided composite material: a meso-scale approach computation, Textile Research Journal, Vol. 84, pp. 1915-1930, 2014 [p. 1919].

53. Zhang C., Binienda W.K., Kohlman L.W., Analytical model and numerical analysis of the elastic behavior of triaxial braided composites, Journal of Aerospace Engineering, Vol. 27, pp. 473-483, 2014 [p. 476].

54. Tan Q., Liu L., Liu Y., Leng J.S., Thermal mechanical constitutive model of fiber reinforced shape memory polymer composite: based on bridging model, Composites Part A, Vol. 64, pp. 132-138, 2014 [p. 134].

55. Shokrieh M.M., Mosalmani R., Omidi M.J., Strain-rate dependent micromechanical method to investigate the strength properties of glass/epoxy composites, Composite Structures, Vol. 111, pp. 232-239, 2014 [p. 234].

56. Sun B., Pan H., Gu B., Tensile impact damage behaviors of co-woven-knitted composite materials with a simplified microstructure model, Textile Research Journal, Vol. 84, pp. 1742 -1760, 2014 [p. 1744].

57. Bhalchandra S.A., Shiradhonkar Y., Daimi S.S., Comparison of Properties of Transversely Isotropic Lamina Using Method of Cells and Composite Cylinder Assemblage, International Journal of Advanced Science and Technology, Vol. 64, pp. 43-58, 2014 [p. 49].

58. Vašíček M., Computational Prediction of the Mechanical Properties of a 2D Triaxially Braided Composite, Journal of Middle European Construction & Design of Cars, 12(2): 10-16, 2014 [p. 12].

59. 张中伟,严静,孙宝忠,钱建华,三维编织复合材料矩形梁与T型梁准静态弯曲实验及有限元分析,《东华大学学报(自然科学版)》,40(5): 522-526, 2014 [p. 524].

60. Nerilli F., Tarquini L., Marino M., Vairo G., Numerical Modeling of Failure Modes in Bolted Composite Laminates, Proceedings of the International Conference on Numerical Analysis and Applied Mathematics, AIP Conf. Proc. 1648, pp. 570019-1–570019-5, 2014 [p. 570019-2].

61. Zhao L., Zhang B.M., Qing X.L., Prediction of the Biaxial Failure Strength of Composite Laminates with Unit Cell Analytic Model, J. Wuhan Univ. Tech. -Mater. Sci. Ed., Vol. 29, No. 5, pp. 923-927, 2014 [p. 925].

62. Ghasemi A.R., Mohammadi M.M., Moradi M., Investigation of Mechanical and Thermal Properties of Polymer Composites Reinforced by Multi-Walled Carbon Nanotube for Reduction of Residual Stresses, Iranian J. Polym. Sci. Tech., Vol. 27, No. 3, pp. 213-230, 2014 [p. 219].

63. Shokrieh M.M., Mosalmani R., Omidi M.J., A strain-rate dependent micromechanical constitutive model for glass/epoxy composite, Composite Structures, Vol. 121, pp. 37-45, 2015 [p. 39].

64. Xu J., Lomov S.V., Verpoest I., A progressive damage model of textile composites on meso-scale using finite element method: Fatigue damage analysis, Computers & Structures, Vol. 152, pp. 96-112, 2015 [p. 105].

65. Nerilli F., Marino M., Vairo G.., A numerical failure analysis of multi-bolted joints in FRP laminates based on basalt fibers, Procedia Engineering, Vol. 109, pp. 492-506, 2015 [p. 495].

66. Zhang D., Sun Y., Wang X., Chen L., Meso-scale finite element analyses of three-dimensional five-directional braided composites subjected to uniaxial and biaxial loading, Journal of Reinforced Plastics & Composites, Vol. 34, pp. 1989-2005, 2015 [p. 1991].

67. Ghasemi A.R., Mohammadi M.M., Mohandes M., The Role of Carbon Nanofibers on Thermo Mechanical Properties of Polymer Matrix Composites and Their Effect on Reduction of Residual Stresses, Composites Part B, Vol. 77, pp. 519-527, 2015 [p. 522].

68. Wu L., Gu B., Sun B., Finite element analyses of four-step 3D braided composite bending  damage using repeating unit cell model, International Journal of Damage Mechanics, Vol. 24, pp. 59–75, 2015 [p. 66].

69. Sun J., Zhou G., Zhou C., Microstructure and mechanical properties of 3D surface-core 4-directional braided composites, Journal of Materials Science, Vol. 50, pp. 7398-7412, 2015 [p. 7406].

70. Qi W., Xu X., Analytical method of dynamic properties of FRP based on micromechanical level, Chinese Journal of Aeronautics, Vol. 28, pp. 939–945, 2015 [p. 941].

71. Niknami A., Shariyat M., Coupled Thermoelasticity Impact Response Analysis of Composite Plates with SMA Wires in Thermal Environments, Iranian Journal of Mechanical Engineering, Vol. 16, pp. 73-96, 2015 [p. 80].

72. Zhang D., Sun Y., Wang X., Chen L., Prediction of macro-mechanical properties of 3D braided composites based on fiber embedded matrix method, Composite Structures, Vol. 134, pp. 393-408, 2015 [p. 402].

73. Zhang S., Zhang C., Chen X., Effect of statistical correlation between ply mechanical properties on reliability of fibre reinforced plastic composite structures, Journal of Composite Materials, Vol. 49, No. 23, pp. 2935-2945, 2015 [p. 2936].

74. Huang B., Sun L., Wang L., Li T., Effect of fiber waviness and cluster on effective elastic properties of fiber reinforced composites, Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition, pp. 1-9, 2015 [p. 3]

75. Tomlinson G., Siegwolf R.T.W., Buchmann N., Khorashadizadeh S.N., New approach for fatigue life prediction of composite plates using micromechanical bridging model, Journal of Composite Materials, Vol. 49, pp. 309–319, 2015 [p. 310].

76. Niknami A., Shariyat M., Refined constitutive, bridging, and contact laws for including effects of the impact-induced temperature rise in impact responses of composite plates with embedded SMA wires, Thin-Walled Structures, Vol. 106, pp. 166-178, 2016 [p. 169].

77. Hafiychuk V., Modeling of Microstructure for Uncertainty Assessment of Carbon Fiber Reinforced Polymer Composites, Aerospace Conference, IEEE Xplore, pp. 1-9, 2016 [p. 3].

78. Zhang S., Zhang L., Wang Y., Tao J., Chen X., Effect of ply level thickness uncertainty on reliability of laminated composite panels, Journal of Reinforced Plastics & Composites, Vol. 35, pp. 1387-1400, 2016 [p. 1390].

79. Liu W., Chang X., Zhang X., Zhang Y., Multiscale model for progressive damage prediction of carbon/epoxy laminates under thermal-mechanical loading, Proceedings of the 2016 4th International Conference on Machinery, Materials and Information Technology Applications, ACSR-Advances in Computer Science Research, Vol. 71, pp. 800-805, 2016 [p. 801].

80. Zhang M., Zuo C., Sun B., Gu B., Thermal ageing degradation mechanisms on compressive behavior of 3-D braided composites in experimental and numerical study, Composite Structures, Vol. 140, pp. 180–191, 2016 [p. 181].

81. 沙云东,贾秋月,骆丽,赵奉同,栾孝驰, 连续纤维增强金属基复合材料涡轮轴结构承扭特性分析,《航空动力学报》, 31卷, pp. 1377-1384, 2016 [p. 1379].

82. Gideon R.K., Zhou H.L., Wu X.Y., Sun B.Z., Gu B.H., Finite element analysis of 3D circular braided composites tube damage based on three unit cell models under axial compression loading, International Journal of Damage Mechanics, Vol. 25, No. 4, pp. 574-607, 2016 [p. 588].

83. Shokrieh M. M., Ghasemi R., Mosalmani R., Micromechanics based analytical model for prediction of the elastic properties of woven fabric composites, Modares Mechanical Engineering, Vol. 16, No. 7, pp. 1-11, 2016 [p. 4] (in Persian).

84. Barfuss D., Garthaus C., Gude M., Grützner R., Design of multi-scale-structured Al-CF/PA6 contour joints, Int. J. Automotive Composites, Vol. 2, No. 3/4, pp. 299–315, 2016 [p. 305].

85. Hafiychuk V., Modeling of microstructure for uncertainty assessment of carbon fiber reinforced polymer composites, 2016 IEEE Aerospace Conference, IEEE, pp. 1-9, 2016 [p. 3].

86. Zhang D., Chen L., Wang Y., Zhang L., Zhang Y., Yu K., Lu X., Sun J., Xiao X., Qian K., Stress field distribution of warp-reinforced 2.5D woven composites using an idealized meso-scale voxel-based model, J. Mater. Sci., Vol. 52, pp. 6814–6836, 2017 [p. 6821].

87. Shokrieh M.M., Ghasemi R., Mosalmani R., A general micromechanical model to predict elastic and strength properties of balanced plain weave fabric composites, J. Comp. Mater., Vol. 51, pp. 2863-2878, 2017 [p. 2877].

88. Zhang W., Gu B., Sun B., Thermal-mechanical coupling modeling of 3D braided composite under impact compression loading and high temperature field, Comp. Sci. Tech., Vol. 140, pp. 73-88, 2017 [p. 75].

89. Qiao T., Liu L., Li F., Lan X., Liu Y., Leng J., Strength property analysis for fiber-reinforced shape memory polymer composite laminate, Journal of Intelligent Material Systems and Structures, Vol. 28, pp. 1627–1639, 2017 [p. 1631].

90. Zhang M., Sun B., Gu B., Meso-structure ageing mechanism of 3-D braided composite's compressive behaviors under accelerated thermo-oxidative ageing environment, Mechanics of Materials, Vol. 115, pp. 47–63, 2017 [p. 50].

91. Gao C.Y., Xiao J.Z., Zhang L.C., Ke Y.L., On the static and dynamic properties of fiber-reinforced polymer composites: A three-phase constitutive model, Journal of Thermoplastics Composite Materials, Vol. 30, pp. 1560–1577, 2017 [p. 1563].

92. Medikonda S., Tabiei A., Hamm R., A Comparative study on the Effect of Representative Volume Cell (RVC) Boundary Conditions on the Elastic Properties of a Micromechanics Based Unidirectional Composite Material Model, Int. J. Comp. Mater., 2017, Vol. 7, pp. 51-71, 2017 [p. 62].

93. Wang H., Cao M., Siddique A., Sun B., Gu B., Numerical analysis of thermal expansion behaviors and interfacial thermal stress of 3D braided composite materials, Computational Materials Science, Vol. 138, pp. 77-91, 2017 [p. 79].

94. Amann C., Kreiss S., Grass H., Meinhardt J., A review on process-induced distortions of carbon fiber reinforced thermosets for large-scale production, Prod. Eng. Res. Devel., Vol. 11, pp. 665–675, 2017 [p. 672].

95. Nerilli F., Vairo G., Progressive damage in composite bolted joints via a computational micromechanical approach, Composites Part B, Vol. 111, pp. 357-371, 2017 [p. 361].

96. Liu W., Chang X., Zhang X., Zhang Y., Progressive damage analysis of carbon/epoxy laminates under couple laser and mechanical loading, Results in Physics, Vol. 7, pp. 995-1005, 2017 [p. 997].

97. 雷贤卿, 杨科林, 马文锁, 孟琦, 网状增强相纤维棒几何建模及弹性性能研究,《中国胶粘剂》, 26卷, pp. 502-507, 2017 [p. 17].

98. Zhang D., Zheng X.T., Wu T.C., Prediction of Elastic Properties of 3D4d Braided Composite Based on Hybrid Model, Key Engineering Materials, Vol. 754, pp. 222-225, 2017 [p. 223].

99. Tao W., Liu Z., Zhu P., Zhu C., Chen W., Multi-scale design of three dimensional woven composite automobile fender using modified particle swarm optimization algorithm, Composite Structures, Vol. 181, pp. 73-83, 2017 [p. 75].

100. 陈滨琦, 曾建江, 王玉青, 童明波, 三向受压下单向复合材料层板破坏的细观力学分析, 《复合材料学报》, Vol. 34, No. 4, pp. 573-583, 2017 [p. 578].

101. 吴闻酉,刘柳,储筠霖,皮爱国, 基于改进桥联模型的CFRP层合结构抗冲击载荷动态力学性能研究, 《北京理工大学学报(自然科学版)》, Vol. 37(s2), pp. 5-9. 2017 [p. 6].

102. Amann C., Kreissl S., Grass H., Meinhardt J., A review on processinduced distortions of carbon fiber reinforced thermosets for largescale production, Prod. Eng. Res. Devel., Vol. 11, pp. 665–675, 2017 [p. 672].

103. Tai J.H., Kaw A., Transverse shear modulus of unidirectional composites with voids estimated by the multiple-cells model, Composites Part A, Vol. 105, pp. 310–320, 2018 [p. 311].

104. Hao W.F, Liu Y., Huang X.R., Liu Y.H., Zhu J.G., A Unit-Cell Model for Predicting the Elastic Constants of 3D Four Directional Cylindrical Braided Composite Shafts, Appl Compos Mater., 25: 619–633, 2018 [p. 628].

105. Liu S., Shi B., Siddique A., Du Y., Sun B., Gu B., Numerical analyses on thermal stress distribution induced from impact compression in 3d carbon fiber/epoxy braided composite materials, Journal of Thermal Stresses, Vol. 41, pp. 903-919, 2018 [p. 906].

106. Zhao Z, Dang H, Zhang C, Yun G. J., Li Y., A multi-scale modeling framework for impact damage simulation of triaxially braided composites. Composites Part A, Vol. 110, pp. 113-125, 2018 [p. 115]

107. Wu W., Liu L., Chu Y., Pi A., Dynamic Mechanical Properties of Typical CFRP Laminate Under High-impact Compressive Loads, Int. J.. Multiphysics, Vol. 12, pp. 57-78, 2018 [p. 59].

108. Petrů M., Ondřej N., FEM Analysis of Mechanical and Structural Properties of Long Fiber-Reinforced Composites, in Finite Element Method-Simulation, Numerical Analysis and Solution Techniques, InTech, http://dx.doi.org/10.5772/intechopen.718812018, pp. 1-22, 2018 [p. 11].

109. Mohammadi B., Mahmoudi A., Developing a new model to predict the fatigue life of cross-ply laminates using coupled CDM-entropy generation approach, Theoretical and Applied Fracture Mechanics, Vol. 95, pp. 18-27, 2018 [p.22].

110. Ren C., Liu T., Siddique A., Sun B., Gu B., High-speed visualizing and mesoscale modeling for deformation and damage of 3D angle-interlock woven composites subjected to transverse impacts, Int. J. Mech. Sci., Vol. 140, pp. 119-132, 2018 [p. 124].

111. Heidari-Rarani M., Bashandeh-Khodaei-Naeini K., Mirkhalaf SM., Micromechanical modeling of the mechanical behavior of unidirectional composites – A comparative study, J. Reinf. Plastics & Comp., Vol. 37, No. 16, pp. 1051–1071, 2018 [1059].

112. Vignoli L. L., Savi M. M., Multiscale Failure Analysis of Cylindrical Composite Pressure Vessel: A Parametric Study, Latin Amer. J. Solids & Struct., Vol. 15, e63:1-20, 2018 [p. e63-5].

113. Ghasemi A. R., Fesharaki M. M., Effect of carbon nanotube on cured shape of cross-ply polymer matrix nanocomposite laminates: analytical and experimental study, Iranian Polymer J., Vol. 27, pp. 965–977, 2018 [p. 970].

114. Zhang M., Sun B., Gu B., Experimental and numerical analyses of matrix shrinkage and compressive behavior of 3-D braided composite under thermo-oxidative ageing conditions, Comp. Struct., Vol. 204, pp. 320-332, 2018 [p. 326].

115. Hu M., Zhang J., Sun B., Gu B.H., Finite element modeling of multiple transverse impact damage behaviors of 3-D braided composite beams at microstructure level, Int. J. Mech. Sci., Vol. 148, pp. 730-744, 2018 [p. 734].

116. 刘亚平, 杨帆, 基于细观力学方法的底部充填封装芯片接合层的热应力计算,《力学季刊》, Vol. 39, No. 1, pp. 39-48, 2018 [p. 41].

117. Toh W., Tan L.B., Tse K.M., Giam A., Raju K., Lee H.P., Tan V.B.C., Material characterization of filament-wound composite pipes, Comp. Struct., Vol. 206, pp. 474-483, 2018 [p. 475].

118. Zhang D., Yu S., Feng G., Xiao X., Ma Q., Qian K., Numerical Identification of Meso Length-Effect and Full-Field Edge-Effect of 3D Braided Composites, Appl. Compos. Mater., Vol. 25, pp. 1133–1154, 2018 [p. 1137].

119. Mustafa G., Afzal Suleman A., Crawford C., Probabilistic first ply failure prediction of composite laminates using a multi-scale M-SaF and Bayesian inference approach, J. Compos. Mater., Vol. 52, No. 2, pp. 169-195, 2018 [p. 188].

120. Ouyang Y., Sun B.Z., Gu B., Finite element analyses on bending fatigue of three-dimesional five-directional braided composite T-beam with mixed unit-cell model, J. Compos. Mater., Vol. 52, No. 9, pp. 1139–1154, 2018 [p. 1146].

121. Tian Z., Yan Y., Ye J., Hong Y., Li X., An Analytical Constitutive Model for Progressive Damage Analysis of Three-Dimensional Braided Composites, Polymer Composites, Vol. 39, No. 11, pp. 4188-4204, 2018 [p. 4189].

122. Cao M., Wang H., Gu B., Sun B., Impact damage and compression behaviours of three- dimensional angle-interlock woven composites after thermo-oxidation degradation, J. Comp. Mater., Vol. 52, No. 15, pp. 2085–2101, 2018 [p. 2088].

123. 欧阳屹伟, 王海楼, 顾伯洪, 孙宝忠, 三维五向编织复合材料T型梁弯曲疲劳应力分布, 《东华大学学报:自然科学版》, Vol. 44, No. 3, pp. 347-353, 2018 [p. 349].

124. Tian Z.Y., Yan Y., Li J., Hong Y., Guo F.L., Progressive damage and failure analysis of three-dimensional braided composites subjected to biaxial tension and compression, Composite Structures, Vol. 185, pp. 496-507, 2018 [p. 498].

125. Tian Z.Y., Yan Y., Hong Y., Guo F.L., Ye J.X., Li J., Improved genetic algorithm for optimization design of a three-dimensional braided composite joint, Composite Structures, Vol. 206, pp. 668-680, 2018 [p. 673].

126. Xing J., Zhao Z., He X., Zhang C., Li Y.L., Mesomechanical Simulation of Rate-Dependent Mechanical Behavior for Triaxially Braided Composites, Earth and Space, 2018 [p. 647].

127. Calvário M., Teixeira A.P., Soares C.G., Uncertainty propagation and sensitivity analysis of a laminated composite beam, in Progress in Maritime Technology and Engineering eds. by Soares G.C. & Santos T.A., CRC Press, http://tayloarandfrancis.com, pp. 395-402, 2018 [p. 397].

128. Mirdehghan A., Nosraty H., Shokrieh M. M., Ghasemi R., Akhbari M., Micromechanical modelling of the compression strength of three-dimensional integrated woven sandwich composites, J. Indus. Textiles, Vol. 48, No. 9, pp. 1399-1419, 2019 [p. 1407].

129. Guo F., Yan Y., Hong Y., Li X., Ye J., Theoretical Prediction for Thermal Expansion Coefficients of Unidirectional Fiber-Reinforced Composites with Variable Elliptical Cross-Sections, Polymer Composites, Vol. 40, No. 1, pp. 187-201, 2019 [p. 189].

130. Liu S., Zhang J., Shi B., Wang L., Gu B., Sun B., Damage and failure mechanism of 3D carbon fiber/epoxy braided composites after thermo-oxidative ageing under transverse impact compression, Comp. Part B, Vol. 161, pp. 677-690, 2019 [p. 680].

131. Cao M., Zhao Y., Gu B.H., Sun B.Z., Tay T.E., Progressive failure of inter-woven carbon-Dyneema fabric reinforced hybrid composites, Comp. Struct., Vol. 211, pp. 175-186, 2019 [p. 178].

132. Wang J., Wen L., Xiao J., Liang T., Hu X., Li P., The mechanical properties and constitutive model of two woven composites including the influences of temperature, strain rate and damage growth, Comp. Part B, Vol. 161, pp. 502-513, 2019 [p. 507].

133. Zhang N., Zhao Q., Mi Z., Wang Y., Gu B., Axial impact compressive behaviors of a novel 3-D integrated multilayer fabric reinforced composite tubular structures, Thin-Walled Structures, Vol. 134, pp. 363-372, 2019 [p. 366].

134. Yu S., Zhang D.T., Qian K., Numerical Analysis of Macro-Scale Mechanical Behaviors of 3D Orthogonal Woven Composites using a Voxel-Based Finite Element Model, Appl. Comp. Mater., Vol. 26, No. 1, pp. 65-83, 2019 [p. 69].

135. Hong Y., Yan Y., Guo F., Li X., Tian Z., Predicting the Elastic Properties of 3D N-Directional Braided Composite via a Theoretical Method, Mech. Comp. Mater., Vol. 55, No. 1, pp. 95-106, 2019 [p. 99].

136. Ghasemi A.R., MohammadiFesharaki M., Influence of different parameters on cured shapes and residual stresses of unsymmetric composite laminate reinforced by multiwall carbon nanotubes, Polymer Bulletin, 76:5751–5771, 2019 [p. 5759].

137. Ren C., Siddique A., Sun B., Gu B., Differences of transverse impact damages in 3D angle-interlock woven composites between warp and weft directions, International Journal of Damage Mechanics, 28(8): 1203-1227, 2019 [p. 1212].

138. He B., Mi Z.X., Wang Y.J., Gu B.H., Unit cell modeling on torsion damage behavior of a novel three-dimensional integrated multilayer fabric-reinforced composite tubular structure, Textile Research Journal, 89(19-20): 4253-4264, 2019 [p. 4258].

139. Li Y.Y., Pan Z.J ., Gu B.H., Sun B.Z., Numerical analysis of punch shear failure and stress characteristics of three-dimensional braided composite with different braiding angles, Int. J. Damage Mech., 28(9): 1418-1437, 2019 [p. 1422].

140. Zhao Z.Q., Liu P., Chen C.Y., Zhang C., Li Y.L., Modeling the transverse tensile and compressive failure behavior of triaxially braided composites, Comp. Sci.Tech., 172: 96-107, 2019 [p. 99].

141. Amir-Ahmadi S., Ghasemi A.R., Mohammadi M., Evaluation of thermal residual stresses of thin-walled laminated composite pipes to characterize the effects of mandrel materials and addition MWCNTs, Mech. Mater., 136: 103083-1--103083-9, 2019 [p. 103083-5].

142. Zhang S.F., Chen X., Stochastic Natural Frequency Analysis of Composite Structures Based on Micro-Scale and Meso-Scale Uncertainty, Appl. Sci.—BASEL, 9(13): 2603, 2019 [p. 2603-3]  

143. Shi B.H., Liu S.K., Siddique A., Zhang J.J., Gu B.H., Sun B.Z., Comparisons on impact fracture behavior between three-dimensional four directional and five directional braided composite materials, Int. J. Damage Mech., 28(7): 990-1020, 2019 [p. 998].

144. 刘鹏, 郭亚洲, 赵振强, 邢军, 张超, 二维三轴编织复合材料压缩失效行为的细观有限元模拟, 《航空学报》, 40(7): 222865, 2019 [p. 222865-5].

145. Yan S., Zhang J.J., Sun B.Z., Gu B.H., In situ measurement of strains at different locations in 3-D braided composites with FBG sensors, Comp. Struct., 230: 111527, 2019 [p. 111527-7].

146. Xing J., Du C., He X., Zhao Z., Zhang C., Li Y., Finite Element Study on the Impact Resistance of Laminated and Textile Composites, Polymers, 11: 1798, 2019 [p. 1798-4].

147. Guo F., Yan Y., Hong Y., Tian Z., Li J., Prediction and optimization design for thermal expansion coefficients of three-dimensional N-directional-braided composites, Polymer Composites, 40(6): 2495-2509, 2019 [P. 2497].

148. Du F., Alghamdi S., Riabbans B., Tan T., An experimental study on the fracture of a unidirectional carbon fiber-reinforced composite under quasistatic torsion, Comp. Part B., 172: 547-554, 2019 [p. 550 Fig. 3].

149. Vignoli L.L., Savi M.A., Pacheco P.M.C.L., Kalamkarov A.L., Comparative analysis of micromechanical models for the elastic composite laminae, Comp. Part B, 174: 106961, 2019 [p. 106961-5]

150. Chang X., Guo X., Ren M., Li T., Micromechanical matrix failure analysis for unidirectional fiber-reinforced composites, Thin-Walled Structures, 141: 275-282, 2019 [p. 279]

151. Hao WF, Huang Z, Zhang L, Zhao GQ, Luo Y, Study on the torsion behavior of 3-D braided composite shafts, Comp. Struct., Vol. 229, pp. 111384-1--111384-9, 2019 [p. 111384-5].

152. Guo FL, Yan Y, Hong Y, Tian ZY, Li J, Prediction and optimization design for thermal expansion coefficients of three-dimensional n-directional-braided composites, Poly. Comp., 40(6): 2495-2509, 2019 [p. 2497].

153. Hong Y., Yan Y., Guo F., Li X., Tian Z., Predicting the Elastic Properties of 3D N-directional Braided Composites via a Theoretical Method, Mech. Comp. Mater., 55(1) 95-106, 2019 [p. 99].

154. Hong Y., Yan Y., Guo F.L., Li J., Tian Z.Y., Experimental and numerical investigation on three-point bending behaviors of unidirectional warp-knitted composites, J. Appl. Poly. Sci., 136(42): 48132, 2019 [p. 48132-7].

155. Zeng H., Liu J.H., Xie Z.M., Sun H.Y., Modeling the shape memory and strength properties of fiber-reinforced shape memory polymer composite laminates, Smart Mater. & Struct., 28(10): 105011, 2019 [p. 105011-7].

156. Romanowicz M., Micromechanics-based prediction of the failure locus of angle-ply laminates subjected to biaxial loading, J. Comp. Mater., Vol. 53, No. 25, pp. 3577-3587, 2019 [p. 3585].

157. Gao X., Siddique A., Sun B., Gu B., Influence of Braiding Angle on Multiple Impact Damages of 3-D Braided Composite along Longitudinal Direction, Appl. Comp. Mater., Vol. 26, pp. 1261–1280, 2019 [p. 1264].

158. Gao X., Siddique A., Sun B., Gu B., Effect of braiding angle on dynamic mechanical properties of 3-D braided rectangular composites under multiple impact compressions, J. Comp. Mater., Vol. 53, No. 13, pp. 1827-1846, 2019 [p. 1832].

159. Dhari R.S., Patel N.P., Wang H.X., Hazell P.J., Progressive damage modeling and optimization of fibrous composites under ballistic impact loading, Mech. Adv. Mater. Struct., p. 1655688, 2019 [p. 1655688-8].

160. Hernandez-Perez A., Fuentes-Gutierrez H., Lopez-Santos F., Ledesma-Orozco E.R., Aviles F., An assessment of micromechanical models to predict the elastic constants of unidirectional polymer composites, Mech. Adv. Mater. Struct., on line (DOI: 10.1080/15376494.2019.1645922), pp. 1-19, 2019 [p. 16].

161. Pan Z.X., Wu X.Y., Wu L.W., Temperature rise caused by adiabatic shear failure in 3D braided composite tube subjected to axial impact compression, J. Comp. Mater., Vol. 54, pp. 1305-1326, 2020 [p. 1311]

162. Mahmoudi A., Mohammadi B., Hosseini-Toudeshky H., Damage behaviour of laminated composites during fatigue loading, Fatigue and Fracture of Engineering Materials & Structures, Vol. 43, No. 4, pp. 698-710, 2020 [p. 700].

163. Shyamsunder L, Khaled B, Rajan SD, Goldberg RK, Carney, KS, DuBois P, Blankenhorn G, Implementing deformation, damage, and failure in an orthotropic plastic material model, J. Comp. Mater., 54(4): 463-484, 2020 [p. 464].  

164. Seyedalikhani S., Shokrieh M.M., Shamaei-Kashani A.R., A novel dynamic constitutive micromechanical model to predict the strain rate dependent mechanical behavior of glass/epoxy laminated composites, Polyer Testing, 82: 106292, 2020 [p. 106292-4].

165. Liu S.K., Zhang J.J., Chen Z.T., Gu B.H., Sun B.Z., Modeling the coupling effects of braiding structure and thermo-oxidative aging on the high-speed impact responses of 3D braided composites, Thin-Walled Structures, 150: 106705, 2020 [p. 106705-3].

166. Zhao Y., Cao M., Tan H.X., Ridha M., Tay T.E., Hybrid woven carbon-Dyneema composites under drop- weight and steel ball impact, Comp. Struct., 236: 111811, 2020 [p. 111811-3]

167. Cao M., Gu B.H., Sun B.Z., Low-velocity impact and residual flexural behaviors of 2.5-D woven composite under accelerated thermal ageing: Experiment and numerical modeling, Int. J. Damage Mech., 29(3): 413- 434, 2020 [p. 417].

168. 汪久根, 郭昊, 洪玉芳, 陈芳华, 自润滑关节轴承衬垫弹性参数的计算, 《纺织学报》, Vol. 41, No. 6, pp.   61-68, 2020 [p. 62]. Wang J.G., Guo H., Hong Y.F., Chen F.H., Elastic parameters calculation of liners of self-lubricating spherical plain bearings, Journal of Textile Research, Vol. 41, No. 6, pp.  61-68, 2020 [p. 62] (in Chinese).

169. Patel N.P., Sharma D.S., Dhari R.S., The Analytical Study of Stress Concentration Factor in an Infinite Plate at Various Temperatures, in Advances in Material Sciences & Engineering, Lecture Notes in Mechanical Engineering, M. Awang, S. S. Emamian & F. Yusof eds., pp. 353-362, 2020 [p. 355].

170. Vignoli L. L., Savi M. A., Pacheco P.M.C.L., Kalamkarov A.L., Micromechanical analysis of transversal strength of composite laminae, Comp. Struct., Vol. 250, p. 112546, 2020 [p. 112546-3].

171. Vignoli L.L., Savi M.A., Pacheco P.M.C.L., Kalamkarov A.L., Multiscale approach to predict strength of notched composite plates, Comp. Struct., Vol. 253, p. 112827, 2020 [p. 112827-6].

172. Li Y., Li W.G., Ma J.Z., Zheng S.F., Zhao Z.Y., Yang M.Q., Dong P., Chen L.M., Temperature dependent longitudinal tensile strength model of unidirectional fiber reinforced polymer composites considering the effect of matrix plasticity, Extreme Mechanics Letters, Vol. 40, p. 100963, 2020 [p. 100963-2].

173. Vignoli L.L., Savi M.A., Pacheco P.M.C.L., Kalamkarov A.L., Micromechanical analysis of longitudinal and shear strength of composite laminae, J. Comp. Mater., Vol.  54, No. 30, pp. 4853-4873, 2020 [p. 4857].

174. Dhari R.S., Patel N.P., The Response of Composite Laminates Subjected to Blast and Impact Loading at Various Temperatures, J. Dynamic Behavior Mater., Vol. 6, pp. 317-335, 2020 [p. 319].

175. Polyzos E., Katalagarianakis A., Polyzos D., Van Hemelrijck D., Pyl L., A multi-scale analytical methodology for the prediction of mechanical properties of 3D-printed materials with continuous fibres, Additive Manufacturing, Vol. 36, p. 101394, 2020 [p. 101394-13].

176. Wu L.W., Wang W., Jiang Q., Lin J.H., Tang Y.H., Illustrating hybrid effect and damage evolution of carbon/aramid braided composite under low -velocity impact, Composite Structures, Vol. 245, p. 112372, 2020 [p. 112372-3].

177. Wang K, Lu Y, Rao YN, Wei N, Ban J, Peng Y, Yao S, Ahzi S, New insights into the synergistic influence of voids and interphase characteristics on effective properties of unidirectional composites, Composite Structures, Vol. 255, p. 112862, 2021 [p. 112862-5].

178. Dhari RS, Patel NP, Wang HX, Hazell PJ, Numerical investigation of Fibonacci series based bio-inspired laminates under impact loading, Composite Structures, Vol. 255, p. 112985, 2021 [p. 112985-9].

179. Hang C, Cui H, Liu HF, Suo T, Micro/meso-scale damage analysis of a 2.5D woven composite including fiber undulation and in-situ effect, Composite Structures, Vol. 256, p. 113027, 2021 [p. 113027-2].

180. Rao YN, Ban J, Yao S, Wang K, Wei N, Lu Y, Ahzi S, A hierarchical prediction scheme for effective properties of fuzzy fiber reinforced composites with two-scale interphases: Based on three-phase bridging model, Mech. Mater., Vol. 152, p. 103653, 2021 [p. 103653-4].

181. Guedes RM(葡萄牙波尔图大学副教授), Validation of trace-based approach to elastic properties of multidirectional glass fibre reinforced composites, Composite Structures, Vol. 257, p. 113170, 2021 [p. 113170-5].

182. Liu W.L., Chen P.H., Theoretical analysis and experimental investigation of the occurrence of fiber bridging in unidirectional laminates under Mode I loading, Composite Structures, Vol. 257, p. 113383, 2021 [p. 113383-2].

183. Ke Y.A., Sun B.Z., Gu B.H., Zhang W., Damage initiation and propagation mechanisms of 3-D angle-interlock woven composites under thermo-oxidative aging, Composite Structures, Vol. 259, p. 113462, 2021 [p. 113462-4].

184. Liu T, Wu XY, Sun BZ, Fan W, Han WL, Yi HL, Investigations of defect effect on dynamic compressive failure of 3D circular braided composite tubes with numerical simulation method, Thin-Walled Structures, Vol. 160, p. 107381, 2021 [p. 107381-5].

185. Yin D.-M., Li B.M., Xiao H.-C., Prediction of three-dimensional elastic behavior of filament-wound composites based on the bridging model, Defence Technology, Vol. 17, No. 2, pp. 609-616, 2021 [p. 611].

186. Rumayshah K.K., Dirgantara T., Judawisastra H., Wicaksono S., Numerical micromechanics model of carbon fiber-reinforced composite using various periodical fiber arrangement, J. Mech. Sci. Tech., Vol. 35, No. 4, pp. 1401-1406, 2021 [p. 1405].

187. Shafiei E., Barbero E.J., Simulation and experimental validation of shear deformation and strength of textile-reinforced composites, Mech. Adv. Mater. Struct., 2021 (on line), p.1933277 [p. 1933277-2].

188. Hu M.Q., Sun B.Z., Gu B.H., Microstructure modeling multiple transverse impact damages of 3-D braided composite based on thermo-mechanical coupling approach, Comp. Part B, Vol. 214, 2021, p. 108741 [p. 108741-2].

189. Shafiei E, Kiasat M.S., Barbero E.J., Rate-dependent viscoplastic modeling and experimental validation of woven glass/epoxy composite materials, Comp. Part B, Vol. 216, 2021, p. 108741 [p. 108827-2].

190. Zhang J.J., Zhang W., Huang S.W., Gu B.H., An experimental-numerical study on 3D angle-interlock woven composite under transverse impact at subzero temperatures, Composite Structures, Vol. 268, 2021, p. 113916 [p. 113936-5].

191. Muyzemnek A.Yu., Ivanova T.N., Kartashova E.D., A Comparison of Experimental and Computation Results of Finding Effective Characteristics of Elastic Properties of Polymer Layered Composites from Carbon and Glass Fabrics, PNRPU Mechanics Bulletin, No. 2, 2021, pp. 88-105 [p. 93].

192. Gholami P., Kouchakzadeh M.A., Farsi M.A., A Continuum Damage Mechanics-based Piecewise Fatigue Damage Model for Fatigue Life Prediction of Fiber-reinforced Laminated Composites, Int. J. Engineering, Vol. 34, No. 6, pp. 1514-1525, 2021 [p. 1517].

193. Mirzaei A.H., Shokrieh M.M., Simulation and measurement of the self-heating phenomenon of carbon/ epoxy laminated composites under fatigue loading, Comp. Part B, Vol. 223, 2021, p. 109097 [p. 109097-5].

194. Gholami P., Farsi M.A., Kouchakzadeh M.A., Stochastic fatigue life prediction of Fiber-Reinforced laminated composites by continuum damage Mechanics-based damage plastic model, Int. J. Fatigue, Vol. 152, 2021, p. 106456 [p. 106456-4].

195. Du C.L., Wang H.F., Zhao Z.Q., Han L., Zhang C., A comparison study on the impact failure behavior of laminate and woven composites with consideration of strain rate effect and impact attitude, Thin-Walled Struct., Vol. 164, 2021, p. 107843 [p. 107843-6].

196. Guo J.H., Sun B.Z., Gu B.H., Zhang W., Failure behaviors of 3D braided composites with defects in different locations under low-velocity impact compression, Textile Research J. (on line), 2021, DOI 10.1177/ 00405175211030882 [p. 6].

197. Sobhani E., Masoodi A.R., Natural frequency responses of hybrid polymer/carbon fiber/FG-GNP nanocomposites paraboloidal and hyperboloidal shells based on multiscale approaches, Aerospace Sci. & Tech., Vol. 119, 2021, p. 107111 [p. 107111-4].

198. Jiang H.Y., Ren Y.R., Jin Q.D., A novel synergistic multi-scale modeling framework to predict micro- and meso-scale damage behaviors of 2D triaxially braided composite, Int. J. Damage Mech. (on line), 2021, pp. 1-34 [p. 6].

199. 杨万庆,王艳超,李能文,徐希宇,叶国锐, 基于桥联模型参数反演的复合材料力学性能预测,《复合材料科学与工程》, 2期, pp. 84-88, 2021 [p. 85].

200. Chu Y., Sun L., Yang X., Wang J., Huang W., Multiscale simulation and theoretical prediction for the elastic properties of unidirectional fiber-reinforced polymer containing random void defects, Poly. Comp., 42: 2958–2972, 2021 [p. 2967].

201. Sobhani E., Moradi-Dastjerdi R., Behdinan K., Masoodi A.R., Ahmadi-Pari A.R., Multifunctional trace of various reinforcements on vibrations of three-phase nanocomposite combined hemispherical-cylindrical shells, Comp. Struct., 279: 114798, 2021 [p. 114798-4]

 

应用了桥联模型的硕士/博士论文列表,文献末尾方括号内的数字表示该论文中出现桥联模型公式或基于桥联模型计算结果的页码

 

202. 张跃峰, 压电编织复合材料有限元分析, 硕士论文, 2005 [p. 33].

203. 陈磊, 复合材料结构宏、细观强度破坏分析, 硕士论文,南京航空航天大学, 2006 [p. 22].

204. Ryan S., Hypervelocity impact induced disturbances on composite sandwich panel spacecraft structures, PhD Thesis, RMIT University (澳大利亚), 2007 [p. 107].

205. Zand B., Modeling of composite laminates subjected to multiaxial loadings, PhD Thesis, The Ohio State University(美国), 2007 [p. 30].

206. Naik G. N., Development and Design Optimization of Laminated Composite Structures using Failure Mechanism Based Failure Criterion, PhD Thesis, Indian Institute of Science (印度), 2007 [p. 87].

207. Post N. L., Reliability based design methodology incorporating residual strength prediction of structural fiber reinforced polymer composites under stochastic variable amplitude fatigue loading, PhD Thesis, Virginia Polytechnic Institute and State University(美国), 2008 [p. 23].

208. 王秋美, 双轴向纬编针织结构热塑性复合材料拉伸性能研究, 博士论文, 东华大学, 2008 [p. 42].

209. Zabihpoor M., Progressive Flexural Fatigue Failure analysis of Composites through layer failure determination, PhD Thesis, Sharif university of Technology(伊朗), 2008 [p.53].

210. 潘志鹏, 钢筋混凝土等效材料的研究与应用, 硕士论文,哈尔滨工业大学, 2008 [p. 7].

211. 孙立, 缝合复合材料加筋结构压缩载荷作用下的力学响应研究, 硕士论文,南京航空航天大学, 2008 [p. 22].

212. 龚瑜, 细观损伤力学在复合材料特性统计模拟仿真研究中的应用, 硕士论文, 浙江大学, 2010 [p. 34].

213. 王欣荣, 考虑工艺因素的复合材料缠绕压力容器的承载能力分析, 硕士论文, 大连理工大学, 2011 [p. 16].

214. Balea L., Comportement des matériaux composites à renforts tricotés élaborés par injection de résine, Doctorat These(博士论文), Universite de Toulouse (法国图卢兹大学), 2011 [p. 40]. 

215. Thompson L.F., Through-Thickness Compression Testing and Theory of Carbon Fibre Composite Materials, PhD Thesis, the University of Manchester (英国), 2011 [p. 77].

216. 赵琳,基于单胞解析模型与渐进损伤分析的复合材料强度预报, 博士论文, 哈尔滨工业大学, 2012 [p. 44].

217. 靳丽莹, 4D轴编C/C复合材料刚度及强度性能研究, 硕士论文, 哈尔滨工业大学, 2012 [p. 12].

218. Zhang C., Multi-scale characterization and failure modeling of carbon/epoxy triaxially braided composite, PhD Thesis, The University of Akron(美国), 2013 [p. 51].

219. Qian C., Multi-scale modelling of fatigue of wind turbine rotor blade composites, Master Thesis, Delft Technische Universiteit(荷兰), 2013 [p. 31].

220. 唐占文, 考虑界面相的复合材料宏—细观渐进损伤解析模型研究, 博士论文, 哈尔滨工业大学, 2013 [p. 11].

221. Mudric T., Impact Behaviour of Multifunctional Panels: Experiments and Simulations, PhD Thesis, Università degli Studi di Padova(意大利帕多瓦大学), 2014 [p. 104].

222. 吴利伟, 四步法三维编织复合材料弯曲疲劳性质及损伤演化有限元分析, 博士论文, 东华大学, 2014 [p. 30].

223. 谭巧,形状记忆环氧聚合物及其复合材料的典型力学行为研究,博士论文,哈尔滨工业大学, 2015 [p. 69] 

224. 胥小强,纤维增强复合材料层合板振动响应分析与优化, 硕士论文, 南京航空航天大学, 2015 [p. 10]

225. Mustafa G. High fidelity micromechanics-based statistical analysis of composite material properties, PhD Thesis, University of Victoria(巴基斯坦), 2016 [p. 70].

226. 郭晓岗,形状记忆聚合物及其复合材料的力学行为研究, 博士论文, 哈尔滨工程大学, 2016 [p. 97]

227. 刘柳, 抗高冲击载荷CFRP层合结构力学性能研究, 硕士论文,北京理工大学, 2016 [p. 16]

228. 张典堂, 三维五向编织复合材料全场力学响应特性及细观损伤分析, 博士论文, 天津工业大学, 2016 [p. 59]

229. Tai J.-H., Effect of Void Fraction on Transverse Shear Modulus of Advanced Unidirectional Composites, MS Thesis, University of South Florida (美国), 2016 [p. 12].

230. 敬凌霄, 多轴向经编聚酯织物增强膜材力学性能研究, 博士论文, 东华大学, 2016 [p. 27].

231. 刘林林, CNG-2型气瓶缠绕层应力损伤机理研究, 硕士论文, 浙江理工大学, 2016 [p. 16].

232. 邵明正, 层联机织复合材料细观结构建模与仿真, 硕士论文, 天津工业大学, 2017 [p. 26].

233. 杨科林, 网状增强相纤维棒力学性能及制备工艺研究, 硕士论文, 河南科技大学, 2017 [p. 18].

234. 柳见化, 纤维增强形状记忆聚合物复合材料强度性能研究, 硕士论文, 南京航空航天大学, 2017 [p. 13]

235. 王海楼, 三维编织碳纤维/环氧树脂复合材料压缩性质的温度效应和热力耦合机制, 博士论文, 东华大学, 2017 [p. 68].

236. 李冰珂, 三维编织复合材料横向冲击变形和损伤细观结构机理, 硕士论文, 东华大学, 2018 [p. 33]

237. 于姣, 三维编织复合材料冲击加载破坏裂纹演化过程, 硕士论文, 东华大学, 2018 [p. 24].

238. 张松俊, 基于多尺度模型的二维三轴编织复合材料的损伤破坏机理研究, 硕士论文, 湖南大学, 2018 [p. 9].

239. 欧阳屹伟, 三维五向编织复合材料T型梁弯曲疲劳多尺度结构破坏机理, 博士论文, 东华大学, 2018 [p. 40].

240. 张威, 三维编织复合材料T型梁高温场横向冲击热力耦合响应与损伤分析, 博士论文, 东华大学, 2018 [p. 53].

241. Monsås A.B., Long-Term Properties of Interlaminar Shear Strength of Composite Laminates, MS Thesis, Norwegian University of Science and Technology (挪威), 2018 [p. 5].

242. 张曼, 三维编织复合材料热氧老化效应及压缩性质降解机理, 博士论文, 东华大学, 2018 [p. 44].

243. 肖建章, 碳纤维复合材料切削加工力学建模与工艺参数优化研究, 博士论文, 浙江大学, 2018 [p. 30].


他人应用真实应力理论(基体应力集中系数)公开发表的研究文献列表

(注:文献尾部方括号内的数字表示该文献中出现真实应力理论公式、明示采用真实应力理论、文内图或表中数据基于真实应力理论计算所得的页码)

1. Hafiychuk V., Modeling of Microstructure for Uncertainty Assessment of Carbon Fiber Reinforced Polymer Composites, Proceedings of 2016 IEEE Aerospace Conference, DOI:10.1109/AERO.2016.7500807, Big Sky, MT, USA, pp. 1-9, 2016 [p. 3].

2. Xin Haohui, Liu Yuqing, Mosallam A., He Jun, Du Ao, Evaluation on material behaviors of pultruded glass fiber reinforced polymer (GFRP) laminates, Composite Structures, 182: 283-300, 2017 [p. 286].

3. Zhu Xiaojun, Chen Xuefeng, Zhai Zhi, Yang Zhibo, Chen Qiang, The effects of thermal residual stresses and interfacial properties on the transverse behaviors of fiber composites with different microstructures, Sci Eng Compos Mater, 24(1): 41–51, 2017 [p. 44]

4. Toh W., Tan L.B., Tse K.M., Giam A., Raju K., Lee H.P., Tan V.B.C., Material characterization of filament-wound composite pipes, Composite Structures, Vol. 206, pp. 474-483, 2018 [p. 476].

5. Vignoli L.L., Savi M.A., Multiscale Failure Analysis of Cylindrical Composite Pressure Vessel: A Parametric Study, Latin American Journal of Solids and Structures, Vol. 15, e63, 2018 [p. e63-5].

6. Xin H., Mosallam A.S., Liu Y., Veljkovic M., He J., Mechanical characterization of a unidirectional pultruded composite lamina using micromechanics and numerical homogenization, Construction and Building Materials, Vol. 216, pp. 101-118, 2019 [p. 115].

7. Ren M.-F., Zhang X.-W., Huang C., Wang B., Li T., An integrated macro/micro-scale approach for in situ evaluation of matrix cracking in the polymer matrix of cryogenic composite tanks, Composite Structures, Vol. 216, pp. 201-212, 2019 [p. 206].

8. 杜志鸿, 倪新华, 刘协权, 于金凤, 吴永胜, 纳观界面应力集中对复合晶粒断裂应力的影响, 《哈尔滨工业大学学报》, Vol. 51, No. 5, pp. 118-124, 2019 [p. 122].

9. Vignoli L.L., Savi M.A., Pacheco P.M.C.L., Kalamkarov A.L., Micromechanical analysis of transversal strength of composite laminae, Composite Structures, Vol. 250, p. 112546, 2020 [p. 112546-3].

10. Vignoli L.L., Savi M.A., Pacheco P.M.C.L., Kalamkarov A.L., Multiscale approach to predict strength of notched composite plates,Composite Structures, Vol. 253, p. 112827, 2020 [p. 112827-15].

11. Vignoli L.L., Savi M.A., Pacheco P.M.C.L., Kalamkarov A.L., Micromechanical analysis of longitudinal and shear strength of composite laminae, Journal of Composite Materials, pp. 1–17, http://dx.doi.org/10.1177/00219983209363432020 [p. 5].

12. Jiang H.Y., Ren Y.R., Jin Q.D., A novel synergistic multi-scale modeling framework to predict micro- and meso-scale damage behaviors of 2D triaxially braided composite, Int. J. Damage Mech., pp. 1-34, 2021, DOI: 10.1177/ 10567895211033974. [p. 9].

13. Liu W.L., Chen P.H., Theoretical analysis and experimental investigation of the occurrence of fiber bridging in unidirectional laminates under Mode I loading, Composite Structures, Vol. 257, p. 113383, 2021 [p. 113383-2].


科研项目

  1. 国家自然科学基金重点项目,11832014,桥联模型发展的几个基本问题研究,2019-01至2023-12,310万,主持.

  2. 国家自然科学基金面上项目,11472192,非理想界面桥联理论及横向压缩下基体的应力集中系数,2015-01至2018-12,110万,主持.

  3. 国家自然科学基金面上项目,11272238,复合材料中基体的现场强度研究,2013-01至2016-12,92万,主持.

  4. 教育部博士点基金项目(博导类),20120072110036,界面对基体现场强度的影响,2013-01至2015-12,12万,主持.

  5. 国家自然科学基金面上项目,50773054,纳米纤维增强有机玻璃的设计与制备,2008-01至2010-12,32万,主持.

  6. 国家高技术研究发展计划(“863”计划)专题,2006AA03Z555,大型风力机叶片一次成型设计与制备,2006-12至2008-12,76万,主持.

  7. 上海浦江人才计划专项,05PJ14093,复合材料风力机叶片的低成本制造技术研究,2005-12至2007-09,20万,主持.

  8. 教育部博士学科点专项基金,20040247008,纤维增强复合材料结构受横向冲击的极限承载能力,2005-01至2008-12,6万,主持.

  9. 上海市科委纳米专项,0352nm091,共轴复合连续纳米纤维的制备研究,2004-01至2005-12,30万,主持.

荣誉和奖励

  • 桥联模型,2019年首届中国复合材料学会科学技术奖二等奖

  • 连续纤维增强复合材料的细观力学弹塑性本构理论,2020年.中国力学学会自然科学二等奖.