冷学远
助理教授
同济大学航空航天与力学学院
电子邮箱:xueyuanleng@tongji.edu.cn
2006.08-2010.07,东北大学,热能与动力工程,学士/ B.Sc.
2010.09-2012.07,东北大学,热能工程,硕士/ M.Phil.
2012.09-2018.05,东北大学,热能工程,博士/Ph.D.
2014.09-2016.09,TU Ilmenau,机械工程,联培博士/Ph.D.
2018.06-2023.04,同济大学,物理科学与工程学院,博士后
2023.05至今,同济大学,航空航天与力学学院,助理教授
1.磁-旋转热对流
在行星或恒星内部,由导电流体湍流热对流所驱动的磁发电机效应,被认为是天体产生自身磁场的重要机制。然而,受天体自转所产生的巨大科里奥利力的约束(即Taylor-Proudman效应),天体内部的湍流强度在理论上是不足以产生和维持磁场的。我们通过湍流直接数值模拟研究热对流中洛伦兹力与科里奥利力的相互作用机制,及其二者如何增强热对流和传热,从而促进磁发电机效应的产生。
2.旋转穿透对流
湍流热对流是驱动海洋和大气中热量与物质交换的主要机制。通常条件下,流体的密度与温度近似满足线性关系(浮力与温度成反比)。然而在实际应用中,水在温度低于4摄氏度会出现密度反转的情况,形成穿透对流。穿透对流广泛存在于自然界中,为了逼近行星尺度上流动的真实物理条件,我们研究科里奥利力如何对穿透对流系统流动和传热行为产生影响。
3.终极态湍流输运与相干结构
自然界中的湍流参数通常处于终极态湍流。实验室尺度的研究很难真实反演自然界中的流动行为。标度律关系是连接实验尺度流动与真实流动之间的重要桥梁;借此关系式,人们可以将实验室获得的结论推广到自然界任意尺度的流动中。本研究以经典湍流系统—Taylor-Couette流为原型,研究经典态、终极态湍流的角动量与热量输运标度律和湍流相干结构演化。
流体力学
1.X.Y. Leng, D. Krasnov, B.W. Li, J.Q. Zhong*, Flow structures and heat transport in Taylor-Couette system with axial temperature gradient, Journal of Fluid Mechanics, 2021, 920, A42.
2.X.Y. Leng, J.Q. Zhong*. Mutual coherent structures for heat and angular momentum transport in turbulent Taylor-Couette flows. Physical Review Fluids, 2022, 7, 043501.
3.X.Y. Leng, Y. Kolesnikov*, D. Krasnov, B.W. Li, Numerical simulation of turbulent Taylor-Couette flow between conducting cylinders in an axial magnetic field at low magnetic Reynolds number, Physics of Fluids, 2018, 30(1): 015107.
1.X.Y. Leng, D. Krasnov, B.W. Li, J.Q. Zhong*, Flow structures and heat transport in Taylor-Couette system with axial temperature gradient, Journal of Fluid Mechanics, 2021, 920, A42.
2.X.Y. Leng, J.Q. Zhong*. Aspect-ratio dependence of heat and momentum transport in turbulent Taylor-Couette flows with axial thermal forcing. International Journal of Heat and Mass Transfer, 2022, 193, 123194.
3.X.Y. Leng, J.Q. Zhong*. Mutual coherent structures for heat and angular momentum transport in turbulent Taylor-Couette flows. Physical Review Fluids, 2022, 7, 043501.
4.X.Y. Leng, Y. Kolesnikov*, D. Krasnov, B.W. Li, MHD Taylor-Couette flow with insulating walls at periodic condition and low magnetic Reynolds number, Magnetohydrodynamics, 2020, 56(2-3): 103-111.
5.X.Y. Leng, Y. Kolesnikov*, D. Krasnov, B.W. Li, Numerical simulation of turbulent Taylor-Couette flow between conducting cylinders in an axial magnetic field at low magnetic Reynolds number, Physics of Fluids, 2018, 30(1): 015107.
6.X.Y. Leng, Y. Kolesnikov*, D. Krasnov, B.W. Li, Magnetohydrodynamic Taylor-Couette flow at periodic and Hartmann wall conditions, Magnetohydrodynamics, 2017, 53(1): 159-168.
7.X.Y. Leng, Y. Yu, B.W. Li*, Numerical study of MHD Taylor vortex flow with low magnetic Reynolds number in finite-length annulus under uniform magnetic field, Computers & Fluids, 2014, 105, 16-27.
8.X.Y. Tian*, W. Gao, B.W. Li, Z.H. Zhang, X.Y. Leng. Mixed convection of nanofluid by two-phase model in an inclined cavity with variable aspect ratio, Chinese Journal of Physics, 2022, 77: 57-72.
9.P.X. Li, B.W. Li, L. Chen, X.Y. Leng, X.H. Luo, Y. Yu, J.K Zhang. 3D DNS of laminar Rayleigh-Bénard convection in a cylinder for incompressible fluid flow, Chinese Journal of Physics, 2022, 79: 374-394.
10.W. Wang, B.W. Li*, P. Varghese, X.Y. Leng, X.Y. Tian, Numerical analysis of three-dimensional MHD natural convection flow in a short horizontal cylindrical annulus, International Communications in Heat and Mass Transfer.
1.磁场松弛作用下液态金属旋转Rayleigh-Bénard对流中流动和传热强化机理研究,国自然科学基金青年科学基金项目,主持.
2.强磁场对旋转热对流中壁面模式转变过程的研究,中国博士后科学基金面上项目,主持.
3.自由滑移与粗糙边界下旋转对流体系的旋涡结构与能量输运研究,国家自然科学基金重大研究计划,参与.
4.固体散料辐射-导热传热优化技术,国家重点研发计划子课题,参与.
1.MHD Taylor-Couette flow with insulating walls at low magnetic Reynolds number. 11th PAMIR International Conference-Fundamental and Applied MHD, Reims, France, 2019.6.
2.Magnetohydrodynamic Taylor-Couette flow in periodical channel and in enclosure. 10th PAMIR International Conference -Fundamental and Applied MHD, Cagliari, Italy, 2016.6.
3.The distinction of instability and turbulence between the Taylor-Couette flow and electrically driven flow in annular channel. 8TH International Conference on Electromagnetic Processing of Materials, Cannes, France, 2015.10.
J. Fluid Mech., Phys. Fluids, Phys. Rev. Fluids